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Final exam logistic

Final exam will be held in person on April 29, at 9am-12pm
Toronto local time in room BN 322 (all sections).

Exams will be 100 points in total and 180 mins long. Students are
required to be at the exam location at least 10 mins early, with
valid identification. Exam will be administered by FAS.

You can use two optional A4 aid sheets - double-sided.

Exam covers all lectures (weeks 1-12), it is closed book/internet.

A representative practice exam will be posted on the webpage.
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Probabilistic ML Terminology

The final exam will be on the entire course; however, it will be more
weighted towards post-midterm material. For pre-midterm material,
refer to the midterm review slides on the website.

Exponential families

Directed Graphical Models

Markov Random Fields

Message passing

Belief propagation

Variable eliminitaion

Sampling methods

Markov chain Monte Carlo

Variational Inference

Variational Autoencoders

Embeddings and Attention

Constrained Decoding

Speculative Decoding

Diffusion models
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Week 1-2: Exponential Families

We can write this distribution as an exponential family

p(x∣θ) =θx(1 − θ)1−x

= exp{x log(θ) + (1 − x) log(1 − θ)}
= exp{x log( θ

1−θ
) + log(1 − θ)}

Here,
T (x) =x

η = log( θ
1−θ

)
A(η) = log(1 + e

η)
h(x) =1

Notice that A
′(η) = e

η

1+eη
= θ is the mean of T (X) = X and

A
′′(η) = e

η

(1+eη)2 = θ(1 − θ) is the variance of X.
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Mean of sufficient statistics

Moments of exponential families can be easily computed using the
log-partition function. Let X ∼ p(x∣η) and denote by
A

′(η) = dA(η)/dη

E[T (X)] −A
′(η) =∫ T (x)p(x∣η)dx −A

′(η)

=∫ {T (x) −A
′(η)}h(x) exp{η⊤T (x) −A(η)}dx

=∫ d

dη
(h(x) exp{η⊤T (x) −A(η)}) dx

=
d

dη
∫ p(x∣η)dx

=
d

dη
1 = 0.

Thus, we conclude that Eη[T (X)] = A
′(η).

The variance varη(T (X)) can be computed similarly.
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MLE for general Exponential Families

Recall: p(x∣η) = h(x) exp{η⊤T (x) −A(η)}.
After observing data D with N samples, we write the log-likelihood:

ℓ(η;D) = log p(D; η) =
N

∑
i=1

log h(x(i)) + η
⊤

N

∑
i=1

T (x(i)) −NA(η)

For the MLE derivation we solve:

ℓ
′(η;D) =

N

∑
i=1

T (x(i)) −NA
′(η) = 0

The MLE for the natural parameters η of a general exponential family:

η̂MLE that solves A
′(η̂MLE) =

1

N

N

∑
i=1

T (x(i)).

Note: This equation may not have an explicit solution but the solution
always corresponds to the global maximum.
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Week 8-9: KL divergence

We will measure the difference between q and p using the
Kullback-Leibler divergence

KL(q(z)∣∣p(z)) = ∫ q(z) log q(z)
p(z)dz

or = ∑
z

q(z) log q(z)
p(z)

Properties of the KL Divergence

KL(q∣∣p) ≥ 0

KL(q∣∣p) = 0 ⇔ q = p

KL(q∣∣p) /= KL(p∣∣q)
KL divergence is not a metric, since it’s not symmetric
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A1 and Tutorial 1

Review how to set constraints for exponential families

Finding sufficient statistics
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Week 8-9: I & M Projection

I-projection: q
∗
= argminq∈QKL(q∣∣p) = Ex∼q(x) log

q(x)
p(x) :

▶ p ≈ q ⟹ KL(q∣∣p) small
▶ I-projection underestimates support, and does not yield the correct

moments.
▶ KL(q∣∣p) penalizes q having mass where p has none.

M-projection: q
∗
= argminq∈QKL(p∣∣q) = Ex∼p(x) log

p(x)
q(x) :

▶ p ≈ q ⟹ KL(p∣∣q) small
▶ KL(p∣∣q) penalizes q missing mass where p has some.
▶ M-projection yields a distribution q(x) with the correct mean and

covariance.

One way to proceed is the mean-field approach where we assume:

q(x) = ∏
i∈V

qi(xi)

the set Q is composed of those distributions that factor out.
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Week 9: Evidence Lower Bound

ELBO is a lower bound on the (log) evidence. Maximizing the ELBO
is the same as minimizing KL(qϕ(z)∣∣p(z∣x)).

KL(qϕ(z)∣∣p(z∣x)) = E
z∼qϕ

log
qϕ(z)
p(z∣x)

= E
z∼qϕ

[ log (qϕ(z) ⋅
p(x)
p(z, x))]

= E
z∼qϕ

[ log
qϕ(z)
p(z, x)] + E

z∼qϕ
log p(x)

∶= −L(ϕ) + log p(x)

Where L(ϕ) is the ELBO:

L(ϕ) = E
z∼qϕ

[ log p(z, x) − log qϕ(z)]
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Week 9: ELBO

Rearranging, we get

L(ϕ) +KL(qϕ(z)∣∣p(z∣x)) = log p(x)

Because KL(qϕ(z)∣∣p(z∣x)) ≥ 0,

L(ϕ) ≤ log p(x)

maximizing the ELBO ⇒ minimizing KL(qϕ(z)∣∣p(z∣x)).
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Week 10: Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(x) = z ∈ F, x ∈ X
Decoder: f(z) = x̃ ∈ X
where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F ≪ dim X

Goal: x̃ = f(g(x)) ≈ x.
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Week 10: Variational Autoencoders

The mean µ controls where encoding of input is centered while the
standard deviation controls how much can the encoding vary.

Encodings are generated at random from the “circle”, the decoder
learns that all nearby points refer to the same input.
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Week 10: VAE vs Amortized VAE Pipeline

For a given input (or minibatch) xi,

Standard VAE

Sample
zi ∼ qϕi

(z∣xi) = N (µi, σ
2
i I).

Amortized VAE

Sample
zi∼qϕ(z∣xi)=
N (µϕ(xi),Σϕ(xi))

Run the code through decoder and get likelihood: pθ(x∣z).
Compute the loss function (-ELBO):

L(x; θ, ϕ) = −Ezϕ∼qϕ[ log pθ(x∣z)] +KL(qϕ(z∣x)∣∣p(z))
Use gradient-based optimization to backpropogate ∂θL, ∂ϕL
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LLM explainability

SAE architecture - Figure out model features

MoEs - Train with features in mind

MoE model routing, sparse vs dense models

Data selection for training

Figure: SAE architecture (Karvonen, 2024)
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Constrained decoding

LLM sampling - Top k, Top p, Epsilon, Temperature

Beam vs Greedy

Approaches to limit output vocabulary

Create practice problems to constrain

Figure: Constrained decoding formulation (Beurer-Kellner, 2024)
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Speculative decoding

Approaches - Draft (small model) and verify (large model)

Medusa head approach, predict k additional Tokens

Review empirical vs theoretical results

Medusa Speculative Decoding
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Closing remarks

Continuing with machine learning:

Courses
▶ CSC 413/2516, “Neural Networks and Deep Learning”
▶ CSC 2515, “Machine Learning”
▶ CSC 2532, “Statistical Learning Theory”
▶ CSC 2541, ”Neural Network Training Dynamics”
▶ Topics courses (varies from year to year): Reinforcement Learning,

Algorithmic Fairness, Computer Vision w/ ML, NLP w/ ML,
Health w/ ML etc.

▶ CSC49X - Capstone courses

Videos from top ML conferences (NeurIPS, ICML, ICLR)

Try to reproduce results from papers
▶ If they’ve released code, you can use that as a guide if you get stuck.

Lots of excellent free resources available online!
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Summary

Review lectures.

Understand derivations.

Solve the practice final.

Review papers mentioned in class

Fill out course evaluations!

Thanks!
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