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Sampling for LLMs Part 2

LLM Sampling
▶ Learned about general LLM sampling (greedy, beam, top-k, top-p)
▶ We applied this to a constrained decoding problem of limiting our

tokens

Sampling from before
▶ Rejection sampling
▶ Using another distribution
▶ Can we use simpler models to generate some tokens?
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LLM Inference

LLM inference is an important task, we can write it as trying to
return the most likely token(s) given some inputs. p(y|x, θ)
We have a dependence on the previous token in an autoregressive
model p(xt|x<t)

“Unfortunately, a single decode step from these larger models is
significantly slower than a step from their smaller counterparts,
and making things worse, these steps are done serially - decoding
K tokens takes K serial runs of the model.” (Leviathan, 2022)
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Speculative Decoding

Some tokens are easier to generate then otherwise

Two parts in LLM generation, Fill the KV cache and Decode to
generate Tokens

Idea: Use a cheaper model to sample from when generating tokens

Example: Output your favourite food with the following format ”I
like to eat”

Accept or reject those tokens based on some probabilities

Similar approach to rejection sampling based on a q(x) and p(x)
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LLM Inference

“Unfortunately, a single decode step from these larger models is
significantly slower than a step from their smaller counterparts, and
making things worse, these steps are done serially - decoding K tokens
takes K serial runs of the model.”
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Speculative Decoding - (Leviathan, 2022)

Define x as a token vector, Mp as the model and p(x) as the
distribution we are trying to sample from

Mq and q(x) are from the simpler model.

If we are using a GPT style model, we are trying to predict
p(xt|x<t)

Problem: Sequential generation is expensive with p(x)

Idea: Generate γ tokens from Mq, use Mp to accept/reject

Idea: Evaluate candidates in parrallel
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Speculative Decoding - (Leviathan, 2022)

Use the more efficient model Mq to generate γ completions

Use the target model Mp to evaluate all of the guesses and their
respective probabilities from Mq in parallel, accepting all those
that can lead to an identical distribution

Sampling an additional token from an adjusted distribution to fix
the first one that was rejected, or to add an additional one if they
are all accepted.
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Speculative Decoding - Sampling Approach

Idea: use probabilities in both models to accept/reject.

Sample x ∼ q(x)

Case 1 - q(x) ≤ p(x) - Keep

Case 2a - q(x) > p(x) - Keep with probability p(x)
q(x)

Case 2b - q(x) > p(x) - Sample x ∼ norm(max(0, p(x)− q(x)))

Equivalent to p(x)
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Speculative Decoding - Visual of the cases
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Speculative Decoding - Sequence
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Speculative Decoding - Expected Token generation

E(T ) = 1−αγ+1

1−α where T is the number of generated tokens

DLK(p, q) =
∑

x |p(x)−M(x)| =
∑

x |q(x)−M(x)|
where M(x) = p(x)+q(x)

2 .

DLK(p, q) = 1−
∑

xmin(p(x), q(x))

α = 1− E(DLK(p, q)) = E(min(p, q))
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Speculative Decoding - Sampling Algorithm

Figure: Algorithm from (Levithan, 2022)
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Speculative Decoding - Review paper 2024

Figure: Review paper by (Xia,2024)
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Speculative Decoding - Multiple Inference Heads

Figure: Xia 2024Prob Learning (UofT) CSC412-Week 12 14 / 53



Speculative Decoding - Multiple Inference Heads

Choose a base model, it would predict the next token p(xt+1, x< t)
Add K decoding heads using the last hidden states ht at position t,
The k-th head is used to predict the token in the (t+ k + 1)

The prediction of the k-th head is denoted as p
(k)
t the original

model is denoted as p
(0)
t

Use tree attention to sample multiple heads concurrently
Accept with an entropy function

Figure: Tree Attention (Xia,2024)
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Tree Attention

Use tree attention to sample multiple heads concurrently
“As exemplified, the top-2 predictions from the first Medusa head
and the top-3 from the second result in 2*3=6 candidates. Each of
these candidates corresponds to a distinct branch within the tree
structure. To guarantee that each token only accesses its
predecessors, we devise an attention mask that exclusively permits
attention flow from the current token back to its antecedent
tokens. The positional indices for positional encoding are adjusted
in line with this structure.”

Figure: Tree Attention (Xia,2024)

Prob Learning (UofT) CSC412-Week 12 16 / 53



Typical Acceptance Sampling

Rather than mimicing the distribution, test empirically

Use an entropy function with a delta-epsilon approach.

ϵ sampling (Hewitt, 2022) allows us to sample from values above
an absolute probability, working with top-k and top-p sampling

Poriginal(xn+k|x1, x2, . . . , xn+k−1) >
min(ϵ, δ exp(−H(Poriginal(x1, x2, . . . , xn+k−1))))

where H(·) denotes the entropy function, and ϵ, δ are the hard
threshold and the entropy-dependent threshold respectively. This
criterion is adapted from Hewitt et al. (2022).

Lots of other interesting ideas when exploring entropy sampling
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Speculative Decoding Overview

We can use smaller models to help predict easier tokens

Use rejection sampling or empircally show new distribution works
well

Many other techniques to draft and verify

Lots of other ideas to explore in the entropy space
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Diffusion Time

These slides are based on:

CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling:

Foundations and Applications, by Kreis, Gao, and Vahdat

Lilian Weng’s blogpost: What are diffusion models?
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Generative Modeling

Common methods:

Variational Autoencoders

Generative Adversarial Networks (GAN)

Flow-based models

Today: Diffusion Models
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Diffusion Models: Text-to-Image Generation and More

DALL·E 3, prompt: Tiny potato kings wearing
majestic crowns, sitting on thrones, overseeing
their vast potato kingdom filled with potato
subjects and potato castles.

Stable Diffusion 3, prompt: Frog sitting in a
1950s diner wearing a leather jacket and a top
hat. On the table is a giant burger and a small
sign that says “froggy fridays”.
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Diffusion Models

Diffusion models use two processes:

A forward process, start from image and keep adding noise.

A reverse process, start from noise and keep denoising it to recover
an image.
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Forward Process

The forward process is a Markov chain: q(x1:T |x0) =
∏T

t=1 q(xt|xt−1)

Each step adds Gaussian noise:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI),

Or equivalently,

xt =
√
1− βtxt−1 +

√
βtϵt−1, ϵt−1 ∼ N (0, I).
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Forward Process

Let αt := 1− βt and ᾱt :=
∏t

i=1 αi.

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1

(d)
=

√
αtαt−1xt−2 +

√
1− αtαt−1ϵ, ϵ ∼ N (0, I).

Therefore
xt =

√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

Prob Learning (UofT) CSC412-Week 12 24 / 53



Forward Process and White Noise

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

(βt)
T
t=1 is chosen such that ᾱT → 0, thus xT converges to a standard

normal random vector.
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Connection to VAEs
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Reverse Process

Ideally, to generate a sample:

1. xT ∼ N (0, I) ≈ q(XT ).
2. xt−1 ∼ q(xt−1|xt) for t = T, . . . , 1.

But q(xt−1|xt) is intractable.
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Reverse Process

q(xt−1|xt) is approximately normal if βt is small.

We approximate it with

pθ(xt−1|xt) = N (µθ(xt, t), σ
2
t ).

µθ comes from a trainable architecture (e.g. neural network) with
parameter θ.

For the reverse process

pθ(x0:T ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt).

To make pθ(x1:T |x0) close to q(x1:T |x0), we will use ideas from
Variational Inference.
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Evidence Lower Bound: ELBO

Recall the ELBO:

KL(q(x1:T |x0)||pθ(x1:T |x0)) + Ex1:T∼q

[
log

pθ(x0:T )

q(x1:T |x0)

]
= log pθ(x0)

=⇒ Minimize Ex0:T∼q

[
log

q(x1:T |x0)
pθ(x0:T )

]
=: L.

Our goal becomes minimizing L.
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Variational Upper Bound

While expressing q(xt−1|xt) is difficult. By Bayes rule, expressing
q(xt−1|xt, x0) is easy:

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)

=⇒ q(xt|xt−1) =
q(xt|x0)q(xt−1|xt, x0)

q(xt−1|x0)
. (*)
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Variational Upper Bound

L =Ex0:T∼q

[
log

q(x1:T |x0)
pθ(x0:T )

]
=Ex0:T∼q

[
log

∏T
t=1 q(xt|xt−1)

pθ(xT )
∏T

t=1 pθ(xt−1|xt)

]

=Ex0:T∼q

[
log

q(xT |x0)
∏T

t=2 q(xt−1|xt, x0)
pθ(xT )

∏T
t=1 pθ(xt−1|xt)

]
By (*)

=Ex0:T∼q

[
KL(q(xT |x0)||pθ(xT ))︸ ︷︷ ︸

lT

+

T∑
t=2

KL(q(xt−1|xt, x0)||pθ(xt−1|xt))︸ ︷︷ ︸
lt−1

+− log pθ(x0|x1)︸ ︷︷ ︸
l0

]
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Variational Upper Bound

Let Lt = Eq[lt] for t = 0, . . . , T .

LT is constant because xT is just the standard normal random
vector.

To compute Lt for t = 1, . . . , T − 1, we first show q(xt−1|xt, x0) is
Gaussian.

q(xt−1|xt, x0) ∝ q(xt|xt−1)q(xt−1|x0)

∝ exp

(
−
∥xt −

√
αtxt−1∥2

2βt
− ∥xt−1 −

√
ᾱt−1x0∥2

2(1− ᾱt−1)

)
∝ exp

(
−∥xt−1 − µ̃(xt, x0)∥2

2β̃t

)
,
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Variational Upper Bound

Therefore, q(xt−1|xt, x0) = N (µ̃(xt, x0), β̃tI).

Basic algebra shows

µ̃(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt
1− ᾱt

x0

β̃t =
1− ᾱt−1

1− ᾱt
βt.

Computing KL between two Gaussians is straightforward:

Lt−1 = Eq [KL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

= Eq

[
∥µ̃(xt, x0)− µθ(xt, t)∥2

2σ2
t

]
+ const.
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Parameterizing the Mean

Recall xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

By plugging in x0 in terms of xt and ϵ:

µ̃(xt, x0) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
.

As a result, we parameterize µθ(xt) to try to predict the noise
using a neural network ϵθ(xt, t),

µθ(xt, t) :=
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
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Training Objective

The loss thus becomes

Lt−1 =
β2
t

2σ2
tαt(1− αt)︸ ︷︷ ︸

λt

Ex0∼q,ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥2

]
,

where xt =
√
ᾱtx0 +

√
1− ᾱtϵ.

Ho et al. [2020] observed that the performance improves if we
simply choose λt = 1.

The simplified loss is thus

Lsimple
t−1 = Ex0∼q,ϵ∼N (0,I)

[
∥ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)
− ϵ∥2

]
.
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Test-Time Sample Generation

Start from xT ∼ N (0, I).

For t = T, . . . , 1, sample xt−1 ∼ pθ(xt−1|xt)
▶ Recall pθ(xt−1|xt) = N (µθ(xt, t), σ

2
t ).

▶ As a result

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, z ∼ N (0, I).
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Summary
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Design Choices: Architecture

ϵθ(xt, t) is implemented using a U-Net architecture, with
residual blocks and self-attention layers.

Weights are shared across time.
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Design Choices: Hyperparameters

βt and σt control the variance of the forward and reverse process
respectively.

βt is chosen linearly between β1 = 10−4 and βT = 0.02.

σ2
t = βt. We could instead consider a trainable full covariance

matrix, i.e. Σθ(xt, t).

T = 1000 steps are taken.

Fancier βt schedules can further reduce loss [Nichol and Dhariwal,
2021].
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Comparison with Variational Autoencoders (VAE)

VAE

Diffusion Model
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Comparison with VAEs

Diffusion models ‌and VAEs both map to isotropic Gaussian.

The latent space has the same dimension as the input space in
DMs. In VAEs, it is smaller dimensional.

The forward process is the encoder, which is fixed. This is trained
in VAEs.

The reverse process is the decoder, which is trained, similar to
the VAEs.
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Conditional Generation

The original examples we saw were images generated conditioned
on a text caption. More examples:

Midjourney, prompt: A close-up profile of a
cute green-eyed kitten with a black nose and
light cheeks sitting on top of a wooden floor
under bright daylight.

DALL·E 3, prompt: Illustration of a chic chair
with a design reminiscent of a pumpkin’s form,
with deep orange cushioning, in a stylish loft
setting.

But the diffusion model we learned about can only generate
unconditioned images.
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Conditional Generation: General Formulation

Suppose we want to condition on y (e.g. class label or describing
caption).

The training data are pairs of (x0, y).

Conditional reverse process:

pθ(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt, y)

We still model the transition probabilities as Gaussian:

pθ(xt−1|xt, y) = N (µθ(xt, t, c),Σθ(xt, t, y)).
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Conditional Generation

The new loss:

L = Eq

lT +
∑
t≥2

KL(q(xt−1|xt, x0)||pθ(xt−1|xt, y))− log pθ(x0|x1, y )


How to incorporate y into the U-Net architecture?

▶ Different techniques for different types of conditioning (labels,
images, captions, ...)
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Classifier Guidance

To further strengthen conditioning, we can train a classifier
pϕ(y|x) and incorporate its log-gradient into score with a scale s.

[Nichol and Dhariwal, 2021]
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Classifier-Free Guidance

Instead of training a separate classifier, simultaneously train a
conditional and an unconditional diffusion model.

We have an implicit classifier by Bayes rule,

p(y|xt) ∝y
p(xt|y)
p(xt)

.

We can simply use

∇xt log p(y|xt) = ∇xt log p(xt|y)−∇xt log p(xt).
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Tradeoff: Sample Quality vs Diversity

s = 0 s = 1 s = 3
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Conditioning Applications

Conditioning is not always on captions.

[Saharia et al., 2022]
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Diffusion Language Models

What if we used diffusion for language objectives - Try to predict
the answer all at once

LLaDa model (Nie, 2025)

For a training sequence x0, we randomly sample t ∈ [0, 1],mask
each token independently with the same probability t to obtain xt

Estimate Eq. (3) via the Monte Carlo method for stochastic
gradient descent training.
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Diffusion Language Models

Will cover equations more in tutorial, but results are promising
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Tradeoffs in Generative Modeling

1

Generative 
Adversarial 
Networks

Denoising 
Diffusion 
Models

Variational Autoencoders, 
Normalizing Flows

Fast 
Sampling

High 
Quality 
Samples

Mode 
Coverage / 
Diversity

[Xiao et al., 2021]

Accelerating diffusion models can overcome the above trilemma.
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Summary

Diffusion Models: Forward and Reverse Processes

Training via Variational Upper Bounds

Conditional Generation

Tradeoffs
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Topics for Further Reading

Denoising Score Matching [Song et al., 2021]

Probability Flow ODE [Song et al., 2021]
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