Speculative Decoding and Language Diffusion Models }

Alireza Mousavi-Hosseini

University of Toronto

. R W

Language Model Inference

@ Inference from autoregressive models is slow

@ Generating K tokens requires K serial runs

@ Can we make it faster by using an approximate model?

. R o

Speculative Decoding

192v2 [cs.LG] 18 May 2023

Fast Inference from Transformers via Speculative Decoding

Yaniv Leviathan™' Matan Kalman "' Yossi Matias '

Abstract

from large ive models like
Transformers is slow - decoding K tokens takes
K serial runs of the model. In this work we in-
troduce speculative decoding - an algorithm to
sample from autoregressive models faster without
any changes to the outputs, by computing several
tokens in parallel. At the heart of our approach lie
the observations that (1) hard language-modeling
tasks often include easier subtasks that can be ap-
proximated well by more efficient models, and
(2) using speculative execution and a novel sam-
pling method, we can make exact decoding from
the large models faster, by running them in par-
allel on the outputs of the approximation mod-
els, potentially generating several tokens concur-
rently, and without changing the distribution. Our
method can accelerate existing off-the-shelf mod-
els without retraining or architecture changes. We
demonstrate it on T5-XXL and show a 2X-3X
acceleration compared to the standard T5X imple-
mentation, with identical outputs.

developed to make inference from them faster. Some ap-
proaches aim to reduce the inference cost for all inputs
equally (e.g. Hinton et al., 2015; Jaszczur et al., 2021;
Hubara et al., 2016; So et al., 2021; Shazeer, 2019). Other
approaches stem from the observation that not all infer-
ence steps are born alike - some require a very large model,
while others can be approximated well by more efficient
models. These adaptive computation methods (e.g. Han
et al., 2021; Sukhbaatar et al., 2019; Schuster et al., 2021;
Scardapane et al., 2020; Bapna et al., 2020; Elbayad et al.,
2019; Schwartz et al., 2020) aim to use less compute re-
sources for easier inference steps. While many of these
solutions have proven extremely effective in practice, they
usually require changing the model i i
the training-procedure and re-training the models, and don’t
maintain identical outputs.

The key observation above, that some inference steps are
“harder” and some are “easier”, is also a key motivator for
our work. We additionally observe that inference from large
models is often not on arithmetic i

but rather on memory bandwidth and communication, so
additional computation resources might be available. There-

ICML 2023

CSC412/2506

3/17

Speculative Decoding

Key
o
(2]

fTas)
fsTas)
fsTae)
fsTae)
fsTae)
fmas)
fsTag)
fsTagr)

[START]

idea:
Use a more efficient model to generate several completions

Evaluate all guesses with the target model in parallel, accept the ones
that lead to an identical distribution

Sample an additional token from an adjusted distribution to fix the
first rejected token

japan ' s benchmark berd n

japan | s benchmark pitke. 22 ;3

japan 3 benchmark pikkei 225 index rose 22 ;g

japan | 5 benchmark pikkel 225 index rose 226 , 69 ; points

fapan | 5 bencmark pikked 225 index rose 226 ; 69 points , or © 1

japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 9859

japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 - in

japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in tekye late
japan . s benchmark Ei‘._l‘(lsé 225 index rose 226 . 69 Eoints s or 1.5 percent, to 10, 989 . 79 in late morning trading . [END]

. R i

Warm-up: Sample 1 Token

o Target model: p(xt|z<t), Approximate model: q(x;|z<¢).

@ To sample z ~ p:
o Sample z ~ g. Accept the sample with probability min(1, p(x)/q(z)).
o If rejected, sample from p’(x) = norm(max(0, p(z) — g(x))).

e The final sample will have distribution p.

o Similar to rejection sampling, but the distribution we sample from
after rejection is different.

. R 51l

Why does it work?

Let X be a sample generated by this procedure. Note that
X =1[R < p(X)/q(X)]X + 1[R > ¢(X /p(X)] X',

where R ~ Unif(0,1), X ~ ¢, X’ ~ p/ independently. Then

. R AT

Why does it work?

Let X be a sample generated by this procedure. Note that
X =1[R < p(X)/q(X)]X + 1[R > ¢(X /p(X)] X',
where R ~ Unif(0,1), X ~ ¢, X’ ~ p/ independently. Then

P[X = z] =P[R < p(z)/q(2)]lq(x) + P[R > p(X)/q(X)]p' (x)
= min(p(z)/q(z), 1)q(x) + E[1 — min(p ()/q()y (z)
= min(p(x), q(x)) + (1 — Zmin()p/ T

Plugging in p’ implies P[X = z| = p(z).

. R AT

Sample More Tokens

Algorithm 1 SpeculativeDecodingStep

Inputs: M,, M,, prefiz.
> Sample 7y guesses 1, ... , from M, autoregressively.
fori =1toydo

gi(z) My(prefiz + [x1,...,zi—1])

z; ~ gi(z)
end for
> Run M), in parallel.
pl(z)! s !p’y+1(z) «

My (prefiz),..., Mp(prefiz + [z1,...,2,])

> Determine the number of accepted guesses 7.
r ~U(0,1),...,7, ~U(0,1)
n+mn({i—1|1<i<y,r > ’;;g:;}u{v})
> Adjust the distribution from M, if needed.
P'(z) ¢ prya(x)

if n < 7 then

p'(z) « norm(maz (0, pni1(z) — qni1(2)))
end if
> Return one token from M), and n tokens from M.
t~p'(z)
return prefiz + [21,...,Zn, 1]

. R e

Expected Number of Tokens in One Serial Evaluation of p

o Let z; = 1 if sample ¢ is accepted and z; = 0 otherwise.

of generated tokens = 1[z1] + 1[z1, 22] + ... + 1[21,. .., 2]
o Let o :=E[z] = P[R; < p(X;)/q(X;)] = 3, min(p(z), ¢(x)).

@ Then
1 —artt
E[# of generated tokens] = ————
—

. R i

How to choose 7

Suppose the ratio between the time of a single run of ¢ to p is
ce(0,1).

The ratio between the time of one speculative decoding step and one
step of p is y¢ + 1.

@ The improvement factor in walltime by speculative decoding is

of generated tokens 1 — ™!

runtime (1—a)(ye+1)

Optimal v minimizes walltime.

. R il

How to choose ~7

Optimal y
-
v}

104

oRNWAUON®O

0.50 0.55 0.60 065 070 075 0.80 0.85 0.90
a

Optimal ~ as a function of « for different ¢

. R T

Language Diffusion Models

2502.09992v2 [cs.CL] 18 Feb 2025

A\

Large Language Diffusion Models

Shen Nie'*! Fengqi Zhu'*! Zebin You'! Xiaolu Zhang?! Jingyang Ou' JunHu?! Jun Zhou?
Yankai Lin'# Ji-Rong Wen' ChongxuanLi'#¥

Abstract

Autoregressive models (ARMs) are widely re-
garded as the cornerstone of large language mod-
els (LLMs). We challenge this notion by intro-
ducing LLaDA, a diffusion model trained from
scratch under the pre-training and supervised fine-
tuning (SFT) paradigm. LLaDA models distri-
butions through a forward data masking process
and a reverse process, parameterized by a vanilla
Transformer to predict masked tokens. By op-
timizing a likelihood bound, it provides a prin-
cipled generative approach for probabilistic in-
ference. Across extensive benchmarks, LLaDA
demonstrates strong scalability, outperforming
our self-constructed ARM baselines. Remark-
ably, LLaDA 8B is competitive with strong LLMs
like LLaMA3 8B in in-context learning and, af-
ter SFT, exhibits impressive instruction-following
abilities in case studies such as multi-turn dia-
logue. Moreover, LLaDA addresses the rever-
sal curse, surpassing GPT-4o in a reversal poem
completion task. Our findings establish diffu-

Swmy

—— LLaDASB Base
—— LLaMA3 8B Base
— LLiMA27B Base

Cval

.

PSS

Figure 1. Zero/Few-Shot Benchmarks. We scale LLaDA to an
unprecedented size of 8B parameters from scratch, achieving com-
petitive performance with strong LLMs (Dubey et al., 2024).

distribution paya(-) by optimizing a model distribution pg (-)
through maximum likelihood estimation, or equivalently KL
i inimization between the two distributions:

sion models as a viable and promising alternati
to ARMs, challenging the assumption that key
LLM capabilities discussed above are inherently
tied to ARMs. Project page and codes: https:
//ml-gsai.github.io/LLaDA-demo/.

max By, (z) logpo(z) ¢ min KL (paa(2)llpe(2)) . (1)

‘Generative modeling principles

CSC412/2506

11/17

What Are Diffusion Models?

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

In diffusion models, we learn to predict original data conditioned on noisy
versions, i.e. to perform denoising.

. R o

Language Diffusion

(a) Mask all tokens independently

+ Mask ratio ¢t ~ U(0,1)

=y X
}
Mask predictor
} }
|

B Mask token } Remask

Non-mask token , Random mask

Models

(b)

Prompt

|
=
}

Mask predictor

4

Response
—_—

v

=

(c) Prompt Response
_—

PRSI =17

; X X | »
' E]
; '
\ Mask predictor 3
! >
; [
| @
i a
! Remask 'yl 13 3

Figure 2. A Conceptual Overview of LLaDA. (a) Pre-training. LLaDA is trained on text with random masks applied independently to all
tokens at the same ratio ¢ ~ U0, 1]. (b) SFT. Only response tokens are possibly masked. (c) Sampling. LLaDA simulates a diffusion
process from ¢ = 1 (fully masked) to ¢ = 0 (unmasked), predicting all masks simultaneously at each step with flexible remask strategies.

From the LLaDA paper

CSC412/2506

13 /17

LLaDA

@ LLaDA replaces the noise with masks.

@ The forward process gradually masks tokens fromt =0to t =1, xg
is original data, x1 is all masked.

@ The core idea is to train a mask predictor that predicts all masked
tokens simulatenously:

o Minimize the loss
1 L
L) = —Etzo,z, n ; 1z} = M]log py(xf | 1)

e The loss is only calculated on masked tokens.

. R T

Pretraining, Finetuning, and Inference

@ Pretraining loss:

L
1 .)
~Etanae [t > s} = M]log po (| x»]
=1

@ Supervised Finetuning loss:

Et po,ro.re [Z 1fr 10gp0(7“0 ’PO;H)]

@ Likelihood evaluation:

L
1 . .
~Ei o [l > 1fri = M]logpa (7} | po, m]
i=1
where [is randomly sampled from {1,..., L}.

. R i

Performance: LLaDA vs. Autoregressive (Pretrained)

Models

| LLaDA 8B* LLaMA3 8B* LLaMA27B* | Qwen27B' Qwen2.57B' Mistral 7B' Deepseek 7BY
Model Diffusion AR AR AR AR AR AR
Training tokens 23T 15T 2T 7T 18T - 2T
General Tasks
MMLU 659 (5) 65.4(5) 459 (5) 703 (5) 742 (5) 64.2 (5) 482 (5)
BBH 49.8 (3) 57.6 (3) 373 (3) 623 (3) 70.4 (3) 56.1(3) 39.5(3)
ARC-C 47.9 (0) 53.1(0) 46.3 (0) 60.6 (25) 63.7 (25) 60.0 (25) 48.1 (0)
Hellaswag 72.5 (0) 79.1 (0) 76.0 (0) 80.7 (10) 80.2 (10) 83.3 (10) 75.4 (0)
Truthful QA 46.4 (0) 44.0 (0) 39.0 (0) 54.2 (0) 56.4 (0) 422 (0) -
WinoGrande 74.8 (5) 713 (5) 725 (5) 77.0 (5) 759 (5) 78.4 (5) 70.5 (0)
PIQA 74.4 (0 80.6 (0) 79.1 (0) - - - 79.2 (0)
Mathematics & Science
GSMSK 70.7 (4) 53.1(4) 143 (4) 80.2 (4) 85.4 (4) 362 (4) 17.4 (8)
Math 2734 15.1 (4) 32(4) 4354 49.8 (4) 102 (4) 6.0 (4)
GPQA 26.1(5) 259 (5) 25.7 (5) 30.8 (5) 36.4 (5) 24.7 (5) -
Code
HumanEval 33.5(0) 34.2(0) 12.8 (0) 512 (0) 57.9 (0) 29.3 (0) 26.2 (0)
HumanEval-FIM | 73.8(2) 733 (2) 26.9 (2) - - - -
MBPP 382 (4) 47.4 (4) 18.4 (4) 64.2 (0) 74.9 (0) 51.1(0) 39.0 3)
Chinese
CMMLU 69.9 (5) 50.7 (5) 32.5(5) 83.9 (5) - - 472 (5)
C-Eval 70.5 (5) 51.7 (5) 34.0 (5) 83.2 (5) - - 45.0 (5
D CSC412/2506 16/17

Performance: LLaDA vs. Autoregressive (Finetuned)

Models

| LLaDA 8B* LLaMA38B* LLaMA27B* | Qwen2 7B Qwen2.57B' Gemma29B! Deepseek 7BY
Model Diffusion AR AR AR AR AR AR
Training tokens 2.3T 15T 2T 1T 18T 8T 2T
Post-training SFT SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL
Alignment pairs 4.5M - - 0.5M + - IM +0.15M - 1.5M +-
General Tasks
MMLU 65.5 (5) 68.4 (5) 4.1 (5) - B B 49.4 (0)
MMLU-pro 37.0 (0) 41.9 (0) 4.6 (0) 44.1 (5) 56.3 (5) 52.1(5) -
Hellaswag 74.6 (0) 75.5 (0) 51.5(0) - - - 68.5 ()
ARC-C $8.5 (0) 82.4 (0) 57.3 (0) - - - 494 ()
Mathematics & Science
GSMSK 78.6 (4) 783 (4) 29.0 (4) 85.7 (0) 91.6 (0) 76.7 (0) 63.0 (0)
Math 26.6 (0) 29.6 (0) 3.8(0) 52.9 (0) 75.5 (0) 443 (0) 15.8 (0)
GPQA 31.8(5) 319 (5) 28.4(5) 343 (0) 36.4 (0) 32.8 (0) -
Code
HumanEval 47.6 (0) 59.8 (0) 16.5 (0) 79.9 (0) 84.8 (0) 68.9 (0) 482 (-)
MBPP 342 (4) 57.6 (4) 20.6 (4) 67.2 (0) 79.2 (0) 74.9 (0) 352 (-)
. R 1 i

