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Why does Claude love the Golden Gate Bridge?

On May 23rd, 2024 a mysterious version of Claude Appeared.

It showed strong preference for the Golden Gate Bridge.
Why?

Understanding such behavior in LLMs is a challenge.
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Recap: GPT-1 Exerpt (Paraphrase)

Given an unsupervised corpus of tokens U = {uy,...,u,}, maximize
the following likelihood:
LiU) = ZlogP(uﬂui,k,...,ui_1;®) (1)
i

where k is the size of the context window, and the conditional
probability P is modeled using a neural network with parameters ©.

Use multi-headed self-attention operation over the input context tokens
followed by position-wise feedforward layers to produce an output
distribution over target tokens:

ho = UW, + W,
h; = transformer_block(h;—1) VI € [1,n]
P(u) = softmax(h, W)

where U = (u_g, ...,u—_1) is the context vector of tokens, n is the

number of layers, W, is the token embedding matrix, and W), is the
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Large Language Models are Large

o Modern LLMs follow the
autoregressive pattern, but nanogpt |
with billions of parameters. o

m
e For context, this is a visual o
representation of a nanoGPT -" iI
model, 85,584 parameters. % I
o GPT-3 is 175 Billion i |
L 1
parameters. ?l
@ The ratio between one neuron §il
to nanoGPT is the same as “\';
nanoGPT to a 7.3B parameter =
model (!!!). Figure: Nano GPT Architecture

e Very large, so what goes on (Bycroft, 2022)
inside the different layers?
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LLM Architecture

e Parameters come in two main components

» MLP and Attention blocks

e Other components like activation functions, embeddings layer,

positional embeddings etc

8B 70B 405B
Layers 32 80 126
Model Dimension 4,096 8192 16,384
FFN Dimension 14,336 28,672 53,248
Attention Heads 32 64 128
Key/Value Heads 8 8 8
Peak Learning Rate 3x107% 15x107* 8x107°
Activation Function SwiGLU
Vocabulary Size 128,000

Positional Embeddings

RoPE (6 = 500, 000)

Figure: LLaMa 3 architecture (Dubey, 2024)

Prob Learning (UofT)

CSC412-Week 11

5/48



How can we understand LLM answers?

e As we covered in previous lectures, Autoencoders can be used for
understanding internal representations by compressing key
features into a latent space.

e Sparse Autoencoders (SAEs) can help identify concepts that
activate specific layers by attempting to define granular features.

@ This allows us to probe the internal workings of LLMs.

Prob Learning (UofT) CSC412-Week 11 6 /48



Recap: Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(z) =z€ F, z€X

Decoder: f(z) =7 € X

where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F < dim X

e Goal: 7= f(g(x)) =~ x.

: outputs
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Computer vision analogies

e Computer vision interpretability offers us some insights of the
challenges of understanding deep learning.

@ Some challenges

Networks are large

Neurons activations are sometimes sparse, sometimes Polysemantic

Polysemantic meaning they capture mutiple concepts within them
Many LLM neurons are “dead” neurons ex OPT (Voita, 2023)

v vy VvYy
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A trip back to MNIST in 2009

Consider a Deep Belief Network with j layers. In particular, layers j-1
and j form an RBM from which we can sample using block Gibbs
sampling, which successively samples from p(h;_1|h;) and p(h;|hj—1),
denoting by h; the bi-nary vector of units from layer j. Along this
Markov chain, we propose to ”clamp” unit h;;, and only this unit, to 1.
We can then sample inputs x by performing ancestral top-down
sampling in the directed belief network going from layer j — 1 to the
input, in the DBN. This will produce a distribution that we shall
denote by pj(x|hi; = 1) where h;; is the unit that is clamped, and p;
denotes the depth-j DBN containing only the first j layers. This
procedure is similar to and inspired from experiments by Hinton et al.
(2006a), where the top layer RBM is trained on the representations
learned by the previous RBM and the label as a one-hot vector; in that
case, one can‘“clamp” the label vector to a particular configuration and
sample from a particular class distribution p(x|class = k). (Erhan,
2009)
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Idea: Extract Features that are monosemantic*®

@ “One of the roadblocks to a better understanding of neural
networks’ internals is polysemanticity, where neurons appear to
activate in multiple, semantically distinct contexts.
Polysemanticity prevents us from identifying concise,
humanunderstandable explanations for what neural networks are
doing internally. One hypothesised cause of polysemanticity is
superposition, where neural networks represent more features than
they have neurons by assigning features to an overcomplete set of
directions in activation space, rather than to individual neurons
(Cunninghamm, 2023)”

e “The most important claim of our paper is that dictionary
learning can extract features that are significantly more
monosemantic than neurons. In this section, we give a detailed
demonstration of this claim for a small number of features which
activate in highly specific contexts. (Bricken, 2023)”
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Visualizing Monosemanetic Features

Feature Activation Distribution (A/1/3450)
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Pause - What are we trying to do?

Map neuron activations to concepts

e Let y be a class of food, x as a description of food, z as latent
variables in a LLM

e Maximize P(y|x, z,0), be able to predict model results when
tweaking some latent variables (neurons)
» Ex - P(y = sushi|z, z,0) The probability of predicting “sushi” given
a description of sushi and a model/neuron

e Maximize P(x|y, z,0), input that most likely data points given
some result
» Ex - P(x|y = sushi, z,0), generate a description of sushi

e Maximize P(z|y,x,#), input that most likely data points given
some result
» Ex - P(z|y = sushi,z, ), find the neuron that is most likely to
know about sushi

**LLMs are weird since x and y can be easily swapped.
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SAE Architecture

logits
t
unembed Our goal is to decompose the MLP activations
1 with a sparse, overcomplete autoencoder.
"features” (512-131,072)
4
MLP  (ReLU)
t
[ [ |
ho|  h
Lt t 1
embed
t
tokens

Figure: Training an SAE to extract features (Bricken, 2023)
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SAE Architecture

Choose the number of features to extract F'
Wider than an AE, use an expansion factor F
LLaMa-3 8B has a 14,336 dim vector, for an SAE set £ = 4

F is our width, known as dictionary size

F = 14,336 % 4 = 57,344

SAE Activations

Input Output

Encoder " Decoder

Figure: (Karvonen, 2024)
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SAE Forward Pass

Simple matrix multiplication

e Multiply input by encoder matrix
e Apply a technique to make the SAE portion sparse (RELU)
e Multiply input by decoder matrix

SAE Activations

Original Model Activations

Matrix
l Matr_ix l Multiply
Multiply Decoder Matrix
f(z) := ReLU(Wenc(2—bdec ) +benc)
'i(f) = Wdecf + bdec J \

RelU

Figure: (Karvonen, 2024)
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Defining the loss function

SAE training balances reconstruction and sparsity.

e Reconstruction loss (L2) and Sparscity by (L1)
o f(z) is active features

@ ) sparsity penalty
L(z) == ||z — &(f ()13 + Allf ()l

L // Figure 2 | The L1 penalty in

pid sparse autoencoder causes
shrinkage — reconstructions are
biased towards smaller norms,
even when perfect reconstruction
is possible.
E.g. a single-feature SAE (with
L1 coefficient A = 1) reconstructs
1/2 rather than 1 when
minimizing Equation (4).

Figure: SAE Loss visulization - (Rajamanoharan, 2024)
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Training an SAE

@ Selecting a base model

» Choose a dataset to train a baseline model, (Bricken, 2023) uses
THE PILE which a curated opensource internet set.

» Select a baseline model architecture, one layer model (Bricken,
2023), or LLM (Gao, 2024),(Rajamanoharan, 2024)

» Train the baseline model, or use pretrained version

o Training the SAE

> Initialize your SAE encoder and decoder with some values
Select data to pass through your baseline model

Select a layer to use for your SAE

Use many forward passes of the baseline model to train SAE
Data mix is important, can mix in low activation data and also
resample

Usually you get many “dead latents”

» OpenAl open sourced some basic training code for SAEs

vV vyVvyy

v
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Evaluating an SAE

e Manual inspection of SAE activated layers
e Feature density - number of live features (LO)

@ Reconstruction loss: How well does the autoencoder reconstruct
the activations

o Statistical Tests

e Downstream loss - Replace layer weights with SAE reconstruction
o Testing Toy Models - Easy problems to verify

@ Probe loss - handselected easily testable metrics

e From (Bricken, 2023), (Rajamanoharan, 2024), (Gao, 2024)
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Changing the Width of the SAE

o Features can become more granular as width increases

A0 (512) A (4,006) Al2 (18:380)

Figure: (Bricken, 2023)
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Architecture Updates

SAE training balances reconstruction and sparsity.
Solutions include Top-k activations and Gated SAEs.

-1
6x10 bett]r 6x10-1

w 1 w
2 5x 10 ‘é’ 5% 10-1
el el
I i
© ©
E4x101{ —o RelU E —&— Rell
S S 4x107! ety
= ProLU STE \ = ProLU STE

—#— Gated *\ —#— Gated

—#— TopK (ours) \\,ﬁ —#— TopK (ours)

10! 10? 104 105
Sparsity (LO) Number of Latents

(a) At a fixed number of latents (n = 32768), TopK  (b) At a fixed sparsity level (Lo = 128), scaling laws
has a better reconstruction-sparsity trade off than are steeper for TopK than ReLU.°
ReLU and ProLU, and is comparable to Gated.

Figure: (Karvonen, 2024)
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Top-K activations

From the Open Al paper, applying a simple 11 year old idea.

“We use a k-sparse autoencoder [Makhzani and Frey, 2013], which
directly controls the number of active latents by using an activation

function (TopK) that only keeps the k largest latents, zeroing the rest.
The encoder is thus defined as:

2z =TopK(Wene(z — bpre))
and the decoder is unchanged. The training loss is simply

L= |lz—a?|

9999

Zero the lesser activated values
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Gated SAEs

The Deepmind paper introduces ideas from Gated Linear Unit (GRUs,

2017 and LSTMs, 1997)

£(x) == 1 [(Wgate(X — baee) + bgate) > 0] ® ReLU(W pag (X — baee) 4+ bumag)

fgate (X) fmag (X)

fgate determines which features are active

scale & shift

Gating Path H }
0 \

|
shift binarize !

Figure: (Rajamanoharan, 2024)
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Open Al Paper Future Research Areas

e TopK forces every token to use exactly k latents, which is likely
suboptimal. Ideally we would constrain E[L0] rather than LO.

e A large fraction of the random activations of features we find,
especially in GPT-4, are not yet adequately monosemantic. We
believe that with improved techniques and greater scalel7 this is
potentially surmountable.

o A context length of 64 tokens is potentially too few tokens to
exhibit the most interesting behaviors of GPT-4.

Prob Learning (UofT) CSC412-Week 11 23 /48



From Claude’s Bridge to Better LLMs: Leveraging SAE
Insights for Explainability

o The Golden Gate Bridge example motivates the need for
interpretability.

e SAE insights can help understand such preferences.

o Related work on monosemanticity:

https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html
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Another idea, what if we try to make layers specialized?

e Rather than guessing what p(z|y, z) we can define p(z) in a certain
way, or train it to identify certain patterns.

@ This idea emerged in the late 80s with papers by Jacobs and
Hinton, including the 1991 paper “Adaptive mixture of local
experts”

o “We compared standard backpropagation networks containing
single hidden layer of 6 or 12 units with mixtures of 4 or 8 simple
experts”

Figure: (Jacobs, 1991)
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MoEs through the years

e “In this work, we extend the Mixture of Experts to use a different
gating network at each layer in a multilayer network, forming a
Deep Mixture of Experts (DMoE).” (Eigan, 2013)

e “This article proposes a new mixture of SVMs that can be easily
implemented in parallel and where each SVM is trained on a small
subset of the whole data set.” (Collobert, 2002)

e “A SVM ... Which is at least quadratic with respect to the
number of examples. Hence, it is hopeless to try to solve real-life
problems having more than a few hundred thousand examples
with SVMs (Collobert, 2002)”

e “In practice, however, there are significant algorithmic and
performance challenges. In this work, we address these challenges
and finally realize the promise of conditional computation,
achieving greater than 1000x improvements in model capacity with
only minor losses in computational efficiency on modern GPU
clusters.(Shazeer, 2017)”
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Concepts from THE SPARSELY-GATED
MIXTURE-OF-EXPERTS LAYER

o “The MoE layer consists of a set of n “expert networks” Fy, ... ,
FE,, and a “gating network” G whose output is a sparse
n-dimensional vector.”

o Define y as output from a MoE layer where y = > | (G(x);E;(x))

o Use softmax gating function where G, () = Softmaz(zW,)

o Add sparsity with Top-k and noise

G(z) = Softmax(KeepTopK (H (z),k))
H(z); = (x - Wy); + StandardNormal() - Softplus((x - Whoise)i)

V; if v; is in the top k elements of v.

KeepTopK (v, k); = .
—oo otherwise.

CSC412-Week 11 27 /48

Prob Learning (UofT)



Visualizing a MoE

o “The MoE layer consists of a set of n “expert networks” Fy, ... ,
FE,, and a “gating network” G whose output is a sparse
n-dimensional vector.”

e Define y as output from a MoE layer where y = Y | (G(z);Ei(x))

e Use softmax gating function where G,(x) = So ftmax(:ng)

o Add sparsity with Top-k and noise

)

.OL\

. (MoE layer

Iz
3
H

cccccc

-

Figure: (Shazeer, 2017)
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Concepts from Switch Transformers (Fedus, 2021)

“Inspired by the success of model scale, but seeking greater
computational efficiency, we instead propose a sparsely-activated
expert model: the Switch Transformer. In our case the sparsity comes
from activating a subset of the neural network weights for each

incoming example.”

Figure: Switchformer Architecture Figure: Performance on training sets

Key advancements in data processing, parralelization, regularization

and scaling.
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What do experts learn?

One challenge is understanding what each expert learns, some work in
Mixtral (Jiang, 2024) attempts to understand it

Jayer:0 Expert speciaization Expert position | Routed tokens
020 Sentineltokens Layer 1 been <extrid 4> <exiraid 7> floral to
015 - entraid_10> <extea id. 12> <extraid 15>
- S— — B - Cextrid_17> <extea d_18> <extra id 195
010
Layerd <extrid_I><exirid 2>
005 et id 6> <extraid 7>
. o > Centraid_ 13> <exiaid145.
S Layer et id 4> <exiraid 5>
S layer:
£ 020 fayer: 15 et id 7> <extraid 14>
g, Cextrid_16> <extraid.17> <extraid 18>

2015

g 010 Punctuation Layer2 .

c Layer6 7 <enid 27>
5 005

= I Conjunctions and articles | Layer3 "The the the the the the the the the The the the

5 0 the the the The the the the

] layer: 31 Layer6  and and and and and and and or and a and
¥ 020 he the if ? a designed does begn s not

015 Cn Bp ol T] | Verbs Layer | dicd falling idenified fell closed left posted ost felt
0.10 et said read miss place stuggling faling signed died
005 flling designed based disagree submitied develop
o ‘Visual descriptions Layer0 her over her know dark upper dark outer
0 1 2 a H 6 7

color, spaial position center upper blue inner yellow raw mama
brigh bright over open your dark blue

3
Expert ID

Proper names Layer1 A Mar Ge Mart Kent Med Cor T Ca Mart.
R Mar Lomsine Colin Ken Sam Ken G Angel A
| & [Weitnn [ priteapers [l stackexchange Do Now Ga GT 0 Ga C Ko € Ko Ga G
oM Mathematics [ Gutenerg [Jj pubMed Abstracts [ wikipedia (en) Counting and numbers | Layer 1 afer 3719627 11 Seven 254,541 two dead we
writen and nunerical forms Some 2012 who e few ower cich

Figure: Mixtral Layer Activations Figure: Experts used
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Deep Seek MoE (Dai, 2024)

“Conventional MoE architectures like GShard, which activate the top-k
out of N experts, face challenges in ensuring expert specialization, i.e.
each expert acquires non-overlapping and focused knowledge. ... It
involves two principal strategies: (1) finely segmenting the experts into
mN ones and activating mK from them, allowing for a more flexible
combination of activated experts; (2) isolating K experts as shared
ones, aiming at capturing common knowledge and mltlgatlng
redundancy in rotv

(a) Conventional Top-2 Routing mmmp (b)-+ Fine-gra on e

" (DeepseckMoE)

Figure: DeepSeekMoE architecture
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LLMs for more deterministic tasks

@ You are using LLMs to do a classification tasks
e But you want the set to be finite

@ You are using the output in another program so it could should be
an enum

Could train a linear head on the model

Or sample more efficiently!

First let’s discuss how LLMs sample
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LLM sampling - Choosing the next token

@ At the final layer of LLM we have a linear layer which maps our
hidden layer outputs into our vocabulary size.

We then apply softmax to each to get the results as a probability

For example our input & might be “I want to eat a”, assume each
word is a single token

r = [“I”, “want”, “to”, “eat”,“a”| = [40, 765, 284, 4483, 257]
We then sec oo S kit s e bability

& & J&: & o
ke

Figure: GPT 2 Softmax
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Temperature

Sometimes we don’t want to use regular softmax, we can use a
temperature parameter to adjust the distribution

o o/ T)
TS eap(z;/T)

A simple way to get out of local minima is to occasionally allow ju

to configurations of higher energy. An algorithm with this property wa: SOr Wil TEAPERTRE ) BRI T T FERATIRS
troduced by Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1952 & 5T
study average properties of thermodynamic systems (Binder, 1978) and JZcz" JZCZW

recently been applied to problems of constraint satisfaction (Kirkpatr
Gelatt, & Vecchi, 1983). We adopt a form of the Metroplis algorithm th o
suitable for parallel computation: If the energy gap between the on and
states of the k™ unit is AE, then regardless of the previous state set s, =11
probability
= 1 "
)

Less ENRopy ———— = > More ENTRoby

w ce T

Px

where T is a parameter that acts like temperature (see Figure 1).

Figure: Temperature in NN Figure: Temperature impact on

(Ackley,1985) Softmax (Sharma,2022)

(UofT) CSC412-Week 11 34 /48



Top k sampling

Now when sampling we often want to constrain the breadth of
tokens we sample from

o We can introduce a parameter called top-k

Top-k only takes the £ most likely members of the vocabulary
when sampling

@ In our previous example if we set k = 3 we only sample the top 3
values
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Top p sampling

e Similarly to using k to limit the vocab size, we can use a Top-p
technique to limit based on cumulative probability.
e Top-p only takes the values that sum up to p

e In our previous example if we set p = 0.5 we only sample up to
cumulitive sum of 0.5

Top 5 Softmax Probabilities for Token 1

Figure: GPT 2 top-p=0.5
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Beam Search

o In our previous examples we used a greedy decoding, with just one
token. We can also decode a few tokens ahead and check for the
most likely n-gram.
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Greedy vs Beam Search formulation

When doing a greedy search we want to maximize each token
individually.

yr = argmax P(y|y1, ..., yi—1,0)
y

Which can be related to the joint probability as:

P(Y|0) = HP Yely<t,0)

For beam search we maximize across a beam length + number of
beams and maximize across each beam length.

Yt = argmaxp(y‘ybeamla - ooy Ybeami—1, 6)

y,beam
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Beam Search

@ In our previous examples we used a greedy decoding, with just one
token. We can also decode a few tokens ahead and check for the
most likely n-gram.

food
Total score: -1.84
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Back to our goal, limit LLM outputs

@ So how do we sample from our given enum values

e We only want to output strawberry or blueberry

e What if we only allow outputs with a given token?

from enum import Enum
from transformers import pipeline

Fruit(Enum):
STRAWBERRY = "strawberry"
BLUEBERRY = "blueberry"
predict_fruit(prompt):
"""Predicts a fruit using a language model."
generator = pipeline('text-generation', model='gpt2')
full_prompt = f"{prompt} "
generated_text = generator((|[full_prompt, max_length=20, num_return_sequences=2ﬂ
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Limiting our tokens

o What if we generate our logits, but only allow our set of tokens?
e Strawberry is represented by [301, 1831, 8396]
e Blueberry is represented by [17585, 8396]

l; if i € {301, 1831,8396} (part of "strawberry”)
L;=11; if 1 € {17585,8396} (part of "blueberry”)

—oo  otherwise

e What if our model just outputs "I want to eat blue” or "I want to
eat straw”?
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A world of grammers

o Let’s look at another example, generating valid JSON
@ We have a set of rules in the JSON spec
o The total set of tokens in the vocabulary is unconstrained

—

object

whitespace

whitespace H string }—)

Figure: State diagram of the ‘object’ spec in JSON

o Uh oh, now what?
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What if we ask the model nicely

@ “Only output blueberry or strawberry”
e Things you might see in a prompt, doesn’t always workings

e “Sure I can help you only output blueberry or strawberry”
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Constrained decoding

o Limiting model output is called constrained decoding
e Can be applied at generation or sampling stage

e Sampling stage, limit the tokens we sample

p(yily1, ..., yi—1,0) if i € {C'} Constrained set of tokens

p(yi) = .
0 otherwise

o Generation stage, add additional tokens P to help with generation

p(vi) = pWily1, - -, vi-1,0,P)

@ Which method affects accuracy?
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Constrained decoding

Algorithm 1 Constrained Decoding

Input: Checker C, LLM f, Tokenized Prompt x
Output: Completion o adhering to C

1: 0+ |
2: C.init()
3: loop
4:  C.update(o) /I advance state of C
5:  m <« C.mask() /I compute mask
6: v« f(z+o) /I compute logits
7. v+ mov
8t < decode(a’) /l e.g., argmax or sample
9: ift = EOS then break

10:  o.append(t)

11: end loop

12: return o // optionally detokenize

Figure: Pseudocode for Constrained decoding(Beurer-Kellner, 2024)
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Challenges of Constrained Decoding

e Minimally invasive methods

o Supports different techniques like Regex, CFGs, Templates

o Low inference overhead

e Paper from 2024 introduces DOMINO to handle these challenges
(Beurer-Kellner, 2024)

(a) Example Grammar (c) Vocabulary (e) Parser (online)
V=4{0,1,2,12,), (,+,+11_(,E0S}
E=E | E+E | (E) | int g yocabulary-aligned Subterminal Tree (offiine, per node)

int = ([1-9][0-9]%) | (6+)

(b) Character Scanner

Figure: Method for DOMINO (Beurer-Kellner, 2024)
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Accuracy and Inference overhead

Dataset Model Method Accuracy Well-Formed Perplexity Performance Impact

Unconstrained  0.415 0.952 1.636 1.0x
GUIDANCE Lundberg etal.  0.345 0.960 1.624 0.98x
Mistral 7B GUIDANCE S Lundberg etal.  0.403 0.976 1.737 0.54x
lama.cpp Gerganov & et. al.  0.375 0.973 1.751 0.80x
GSMSK DoMiINo (k :Aoo) 0.418 0.968 1.739 1.77x
Unconstrained  0.262 0.904 1.650 1.0x
GUIDANCE Lundberg etal.  0.152 0.947 1.659 1.12x
Llama-2 13B GUIDANCE ™ Lundberg etal. ~ 0.259 0.977 1.760 0.73x
1lama.cpp Gerganov & et. al.  0.237 0.978 1.780 0.86x
DOMINO (k = o00) 0.262 0.920 1.750 1.66x
Unconstrained  0.21 0.988 1.573 1.0x
GUIDANCE Lundberg etal.  0.098 0.998 1.780 2.02x
Mistral 7B GUIDANCE ™ Lundberg etal.  0.19 0.998 1.896 0.82x
1lama.cpp Gerganov & et. al.  0.117 0.995 1.560 0.80x
DOMINO (k = o00) 0.21 0.988 1.902 2.66x
CoNLL2003 Unconstrained 009 0.897 1579 1.0x
GUIDANCE Lundberg etal.  0.062 1.000 1.820 2.18x
Llama-2 138 GUIDANCE ™* Lundberg etal. ~ 0.087 0.980 1.767 0.90x
1lama. cpp Gerganov & et. al.  0.080 0.922 1.786 0.86x
DOMINO (k = o0)  0.09 0.897 1.812 2.71x

Figure: Method for DOMINO (Beurer-Kellner, 2024)

DOMINO uses a technique called speculative decoding, something we’ll
cover next lecture!
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Summary

@ Sparse Autoencoders are useful for finding features in models
e MoE attempt to have parts of the model learn specific behaviors

e Constrained decoding let’s us introduce smarter token sampling
when generating sequences
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