
CSC412
Probabilistic Learning and Reasoning

Week 11 LLM Interpretability:
Sparse Auto Encoders, MoEs & Constrained Decoding

Denys Linkov

University of Toronto

Prob Learning (UofT) CSC412-Week 11 1 / 48

Why does Claude love the Golden Gate Bridge?

On May 23rd, 2024 a mysterious version of Claude Appeared.

It showed strong preference for the Golden Gate Bridge.

Why?

Understanding such behavior in LLMs is a challenge.

Prob Learning (UofT) CSC412-Week 11 2 / 48

Recap: GPT-1 Exerpt (Paraphrase)

Given an unsupervised corpus of tokens U = {u1, . . . , un}, maximize
the following likelihood:

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (1)

where k is the size of the context window, and the conditional
probability P is modeled using a neural network with parameters Θ.

Use multi-headed self-attention operation over the input context tokens
followed by position-wise feedforward layers to produce an output
distribution over target tokens:

h0 = UWe +Wp

hl = transformer block(hl−1) ∀l ∈ [1, n]

P (u) = softmax(hnW
T
e)

where U = (u−k, . . . , u−1) is the context vector of tokens, n is the
number of layers, We is the token embedding matrix, and Wp is the
position embedding matrix.Prob Learning (UofT) CSC412-Week 11 3 / 48

Large Language Models are Large

Modern LLMs follow the
autoregressive pattern, but
with billions of parameters.

For context, this is a visual
representation of a nanoGPT
model, 85,584 parameters.

GPT-3 is 175 Billion
parameters.

The ratio between one neuron
to nanoGPT is the same as
nanoGPT to a 7.3B parameter
model (!!!).

Very large, so what goes on
inside the different layers?

Figure: Nano GPT Architecture
(Bycroft, 2022)

Prob Learning (UofT) CSC412-Week 11 4 / 48

LLM Architecture

Parameters come in two main components
▶ MLP and Attention blocks

Other components like activation functions, embeddings layer,
positional embeddings etc

Figure: LLaMa 3 architecture (Dubey, 2024)

Prob Learning (UofT) CSC412-Week 11 5 / 48

How can we understand LLM answers?

As we covered in previous lectures, Autoencoders can be used for
understanding internal representations by compressing key
features into a latent space.

Sparse Autoencoders (SAEs) can help identify concepts that
activate specific layers by attempting to define granular features.

This allows us to probe the internal workings of LLMs.

Prob Learning (UofT) CSC412-Week 11 6 / 48

Recap: Autoencoders

Autoencoders reconstruct their input via an encoder and a decoder.

Encoder: g(x) = z ∈ F, x ∈ X
Decoder: f(z) = x̃ ∈ X
where X is the data space, and F is the feature (latent) space.
z is the code, compressed representation of the input, x. It is
important that this code is a bottleneck, i.e. that

dim F ≪ dim X

Goal: x̃ = f(g(x)) ≈ x.

Prob Learning (UofT) CSC412-Week 11 7 / 48

Computer vision analogies

Computer vision interpretability offers us some insights of the
challenges of understanding deep learning.

Some challenges
▶ Networks are large
▶ Neurons activations are sometimes sparse, sometimes Polysemantic
▶ Polysemantic meaning they capture mutiple concepts within them
▶ Many LLM neurons are “dead” neurons ex OPT (Voita, 2023)

Prob Learning (UofT) CSC412-Week 11 8 / 48

A trip back to MNIST in 2009

Consider a Deep Belief Network with j layers. In particular, layers j-1
and j form an RBM from which we can sample using block Gibbs
sampling, which successively samples from p(hj−1|hj) and p(hj |hj−1),
denoting by hj the bi-nary vector of units from layer j. Along this
Markov chain, we propose to ”clamp” unit hij , and only this unit, to 1.
We can then sample inputs x by performing ancestral top-down
sampling in the directed belief network going from layer j − 1 to the
input, in the DBN. This will produce a distribution that we shall
denote by pj(x|hij = 1) where hij is the unit that is clamped, and pj
denotes the depth-j DBN containing only the first j layers. This
procedure is similar to and inspired from experiments by Hinton et al.
(2006a), where the top layer RBM is trained on the representations
learned by the previous RBM and the label as a one-hot vector; in that
case, one can“clamp” the label vector to a particular configuration and
sample from a particular class distribution p(x|class = k). (Erhan,
2009)

Prob Learning (UofT) CSC412-Week 11 9 / 48

Idea: Extract Features that are monosemantic*

“One of the roadblocks to a better understanding of neural
networks’ internals is polysemanticity, where neurons appear to
activate in multiple, semantically distinct contexts.
Polysemanticity prevents us from identifying concise,
humanunderstandable explanations for what neural networks are
doing internally. One hypothesised cause of polysemanticity is
superposition, where neural networks represent more features than
they have neurons by assigning features to an overcomplete set of
directions in activation space, rather than to individual neurons
(Cunninghamm, 2023)”

“The most important claim of our paper is that dictionary
learning can extract features that are significantly more
monosemantic than neurons. In this section, we give a detailed
demonstration of this claim for a small number of features which
activate in highly specific contexts. (Bricken, 2023)”

Prob Learning (UofT) CSC412-Week 11 10 / 48

Visualizing Monosemanetic Features

Figure: (Bricken, 2023)
Prob Learning (UofT) CSC412-Week 11 11 / 48

Pause - What are we trying to do?

Map neuron activations to concepts

Let y be a class of food, x as a description of food, z as latent
variables in a LLM

Maximize P (y|x, z, θ), be able to predict model results when
tweaking some latent variables (neurons)

▶ Ex - P (y = sushi|x, z, θ) The probability of predicting “sushi” given
a description of sushi and a model/neuron

Maximize P (x|y, z, θ), input that most likely data points given
some result

▶ Ex - P (x|y = sushi, z, θ), generate a description of sushi

Maximize P (z|y, x, θ), input that most likely data points given
some result

▶ Ex - P (z|y = sushi, x, θ), find the neuron that is most likely to
know about sushi

**LLMs are weird since x and y can be easily swapped.
Prob Learning (UofT) CSC412-Week 11 12 / 48

SAE Architecture

Figure: Training an SAE to extract features (Bricken, 2023)

Prob Learning (UofT) CSC412-Week 11 13 / 48

SAE Architecture

Choose the number of features to extract F
Wider than an AE, use an expansion factor E
LLaMa-3 8B has a 14,336 dim vector, for an SAE set E = 4
F is our width, known as dictionary size

F = 14, 336 ∗ 4 = 57, 344

Figure: (Karvonen, 2024)

Prob Learning (UofT) CSC412-Week 11 14 / 48

SAE Forward Pass

Simple matrix multiplication

Multiply input by encoder matrix

Apply a technique to make the SAE portion sparse (RELU)

Multiply input by decoder matrix

f(x) := ReLU(Wenc(x−bdec)+benc)

x̂(f) := Wdecf + bdec

Figure: (Karvonen, 2024)

Prob Learning (UofT) CSC412-Week 11 15 / 48

Defining the loss function

SAE training balances reconstruction and sparsity.

Reconstruction loss (L2) and Sparscity by (L1)

f(x) is active features

λ sparsity penalty

L(x) := ∥x− x̂(f(x))∥22 + λ∥f(x)∥1

Figure: SAE Loss visulization - (Rajamanoharan, 2024)

Prob Learning (UofT) CSC412-Week 11 16 / 48

Training an SAE

Selecting a base model
▶ Choose a dataset to train a baseline model, (Bricken, 2023) uses

THE PILE which a curated opensource internet set.
▶ Select a baseline model architecture, one layer model (Bricken,

2023), or LLM (Gao, 2024),(Rajamanoharan, 2024)
▶ Train the baseline model, or use pretrained version

Training the SAE
▶ Initialize your SAE encoder and decoder with some values
▶ Select data to pass through your baseline model
▶ Select a layer to use for your SAE
▶ Use many forward passes of the baseline model to train SAE
▶ Data mix is important, can mix in low activation data and also

resample
▶ Usually you get many “dead latents”
▶ OpenAI open sourced some basic training code for SAEs

Prob Learning (UofT) CSC412-Week 11 17 / 48

Evaluating an SAE

Manual inspection of SAE activated layers

Feature density - number of live features (L0)

Reconstruction loss: How well does the autoencoder reconstruct
the activations

Statistical Tests

Downstream loss - Replace layer weights with SAE reconstruction

Testing Toy Models - Easy problems to verify

Probe loss - handselected easily testable metrics

From (Bricken, 2023), (Rajamanoharan, 2024), (Gao, 2024)

Prob Learning (UofT) CSC412-Week 11 18 / 48

Changing the Width of the SAE

Features can become more granular as width increases

Figure: (Bricken, 2023)

Prob Learning (UofT) CSC412-Week 11 19 / 48

Architecture Updates

SAE training balances reconstruction and sparsity.
Solutions include Top-k activations and Gated SAEs.

Figure: (Karvonen, 2024)

Prob Learning (UofT) CSC412-Week 11 20 / 48

Top-K activations

From the Open AI paper, applying a simple 11 year old idea.

“We use a k-sparse autoencoder [Makhzani and Frey, 2013], which
directly controls the number of active latents by using an activation
function (TopK) that only keeps the k largest latents, zeroing the rest.
The encoder is thus defined as:

z = TopK(Wenc(x− bpre))

and the decoder is unchanged. The training loss is simply

L = ||x− x2||

””

Zero the lesser activated values

Prob Learning (UofT) CSC412-Week 11 21 / 48

Gated SAEs

The Deepmind paper introduces ideas from Gated Linear Unit (GRUs,
2017 and LSTMs, 1997)

f̃(x) := 1 [(Wgate(x− bdec) + bgate) > 0]︸ ︷︷ ︸
fgate(x)

⊙ReLU(Wmag(x− bdec) + bmag)︸ ︷︷ ︸
fmag(x)

fgate determines which features are active

Figure: (Rajamanoharan, 2024)

Prob Learning (UofT) CSC412-Week 11 22 / 48

Open AI Paper Future Research Areas

TopK forces every token to use exactly k latents, which is likely
suboptimal. Ideally we would constrain E[L0] rather than L0.

A large fraction of the random activations of features we find,
especially in GPT-4, are not yet adequately monosemantic. We
believe that with improved techniques and greater scale17 this is
potentially surmountable.

A context length of 64 tokens is potentially too few tokens to
exhibit the most interesting behaviors of GPT-4.

Prob Learning (UofT) CSC412-Week 11 23 / 48

From Claude’s Bridge to Better LLMs: Leveraging SAE
Insights for Explainability

The Golden Gate Bridge example motivates the need for
interpretability.

SAE insights can help understand such preferences.

Related work on monosemanticity:
https://transformer-circuits.pub/2024/

scaling-monosemanticity/index.html

Prob Learning (UofT) CSC412-Week 11 24 / 48

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Another idea, what if we try to make layers specialized?

Rather than guessing what p(z|y, x) we can define p(z) in a certain
way, or train it to identify certain patterns.
This idea emerged in the late 80s with papers by Jacobs and
Hinton, including the 1991 paper “Adaptive mixture of local
experts”
“We compared standard backpropagation networks containing
single hidden layer of 6 or 12 units with mixtures of 4 or 8 simple
experts”

Figure: (Jacobs, 1991)
Prob Learning (UofT) CSC412-Week 11 25 / 48

MoEs through the years

“In this work, we extend the Mixture of Experts to use a different
gating network at each layer in a multilayer network, forming a
Deep Mixture of Experts (DMoE).” (Eigan, 2013)

“This article proposes a new mixture of SVMs that can be easily
implemented in parallel and where each SVM is trained on a small
subset of the whole data set.” (Collobert, 2002)

“A SVM ... Which is at least quadratic with respect to the
number of examples. Hence, it is hopeless to try to solve real-life
problems having more than a few hundred thousand examples
with SVMs (Collobert, 2002)”

“In practice, however, there are significant algorithmic and
performance challenges. In this work, we address these challenges
and finally realize the promise of conditional computation,
achieving greater than 1000x improvements in model capacity with
only minor losses in computational efficiency on modern GPU
clusters.(Shazeer, 2017)”

Prob Learning (UofT) CSC412-Week 11 26 / 48

Concepts from THE SPARSELY-GATED
MIXTURE-OF-EXPERTS LAYER

“The MoE layer consists of a set of n “expert networks” E1, . . . ,
En, and a “gating network” G whose output is a sparse
n-dimensional vector.”

Define y as output from a MoE layer where y =
∑n

i=1(G(x)iEi(x))

Use softmax gating function where Gσ(x) = Softmax(xẆg)

Add sparsity with Top-k and noise

G(x) = Softmax(KeepTopK(H(x), k))

H(x)i = (x ·Wg)i + StandardNormal() · Softplus((x ·Wnoise)i)

KeepTopK(v, k)i =

{
vi if vi is in the top k elements of v.

−∞ otherwise.

Prob Learning (UofT) CSC412-Week 11 27 / 48

Visualizing a MoE

“The MoE layer consists of a set of n “expert networks” E1, . . . ,
En, and a “gating network” G whose output is a sparse
n-dimensional vector.”
Define y as output from a MoE layer where y =

∑n
i=1(G(x)iEi(x))

Use softmax gating function where Gσ(x) = Softmax(xẆg)
Add sparsity with Top-k and noise

Figure: (Shazeer, 2017)

Prob Learning (UofT) CSC412-Week 11 28 / 48

Concepts from Switch Transformers (Fedus, 2021)

“Inspired by the success of model scale, but seeking greater
computational efficiency, we instead propose a sparsely-activated
expert model: the Switch Transformer. In our case the sparsity comes
from activating a subset of the neural network weights for each
incoming example.”

Figure: Switchformer Architecture Figure: Performance on training sets

Key advancements in data processing, parralelization, regularization
and scaling.

Prob Learning (UofT) CSC412-Week 11 29 / 48

What do experts learn?

One challenge is understanding what each expert learns, some work in
Mixtral (Jiang, 2024) attempts to understand it

Figure: Mixtral Layer Activations Figure: Experts used

Prob Learning (UofT) CSC412-Week 11 30 / 48

Deep Seek MoE (Dai, 2024)

“Conventional MoE architectures like GShard, which activate the top-k
out of N experts, face challenges in ensuring expert specialization, i.e.
each expert acquires non-overlapping and focused knowledge. ... It
involves two principal strategies: (1) finely segmenting the experts into
mN ones and activating mK from them, allowing for a more flexible
combination of activated experts; (2) isolating Ks experts as shared
ones, aiming at capturing common knowledge and mitigating
redundancy in routed experts”

Figure: DeepSeekMoE architecture

Prob Learning (UofT) CSC412-Week 11 31 / 48

LLMs for more deterministic tasks

You are using LLMs to do a classification tasks

But you want the set to be finite

You are using the output in another program so it could should be
an enum

Could train a linear head on the model

Or sample more efficiently!

First let’s discuss how LLMs sample

Prob Learning (UofT) CSC412-Week 11 32 / 48

LLM sampling - Choosing the next token

At the final layer of LLM we have a linear layer which maps our
hidden layer outputs into our vocabulary size.

We then apply softmax to each to get the results as a probability

For example our input x might be “I want to eat a”, assume each
word is a single token

x = [“I”, “want”, “to”, “eat”,“a”] = [40, 765, 284, 4483, 257]

We then see what tokens would be next with a probability

Figure: GPT 2 Softmax

Prob Learning (UofT) CSC412-Week 11 33 / 48

Temperature

Sometimes we don’t want to use regular softmax, we can use a
temperature parameter to adjust the distribution

qi =
exp(zi/T)∑
j exp(zj/T)

Figure: Temperature in NN
(Ackley,1985)

Figure: Temperature impact on
Softmax (Sharma,2022)

Prob Learning (UofT) CSC412-Week 11 34 / 48

Top k sampling

Now when sampling we often want to constrain the breadth of
tokens we sample from

We can introduce a parameter called top-k

Top-k only takes the k most likely members of the vocabulary
when sampling

In our previous example if we set k = 3 we only sample the top 3
values

Prob Learning (UofT) CSC412-Week 11 35 / 48

Top p sampling

Similarly to using k to limit the vocab size, we can use a Top-p
technique to limit based on cumulative probability.

Top-p only takes the values that sum up to p

In our previous example if we set p = 0.5 we only sample up to
cumulitive sum of 0.5

Figure: GPT 2 top-p=0.5

Prob Learning (UofT) CSC412-Week 11 36 / 48

Beam Search

In our previous examples we used a greedy decoding, with just one
token. We can also decode a few tokens ahead and check for the
most likely n-gram.

Figure: Beamsearch visual using (M-ric, 2024)

Prob Learning (UofT) CSC412-Week 11 37 / 48

Greedy vs Beam Search formulation

When doing a greedy search we want to maximize each token
individually.

yt = argmax
y

P (yt|y1, . . . , yt−1, θ)

Which can be related to the joint probability as:

P (Y |θ) =
T∏
t=1

P (yt|y<t, θ)

For beam search we maximize across a beam length + number of
beams and maximize across each beam length.

yt = argmax
y,beam

P (y|ybeam1 , . . . , ybeamt−1, θ)

Prob Learning (UofT) CSC412-Week 11 38 / 48

Beam Search

In our previous examples we used a greedy decoding, with just one
token. We can also decode a few tokens ahead and check for the
most likely n-gram.

Figure: Beamsearch visual using (M-ric, 2024)

Prob Learning (UofT) CSC412-Week 11 39 / 48

Back to our goal, limit LLM outputs

So how do we sample from our given enum values

We only want to output strawberry or blueberry

What if we only allow outputs with a given token?

Prob Learning (UofT) CSC412-Week 11 40 / 48

Limiting our tokens

What if we generate our logits, but only allow our set of tokens?

Strawberry is represented by [301, 1831, 8396]

Blueberry is represented by [17585, 8396]

L′
i =


li if i ∈ {301, 1831, 8396} (part of ”strawberry”)

li if i ∈ {17585, 8396} (part of ”blueberry”)

−∞ otherwise

What if our model just outputs ”I want to eat blue” or ”I want to
eat straw”?

Prob Learning (UofT) CSC412-Week 11 41 / 48

A world of grammers

Let’s look at another example, generating valid JSON

We have a set of rules in the JSON spec

The total set of tokens in the vocabulary is unconstrained

Figure: State diagram of the ‘object’ spec in JSON

Uh oh, now what?

Prob Learning (UofT) CSC412-Week 11 42 / 48

What if we ask the model nicely

“Only output blueberry or strawberry”

Things you might see in a prompt, doesn’t always workings

“Sure I can help you only output blueberry or strawberry”

Prob Learning (UofT) CSC412-Week 11 43 / 48

Constrained decoding

Limiting model output is called constrained decoding

Can be applied at generation or sampling stage

Sampling stage, limit the tokens we sample

p(yi) =

{
p(yi|y1, . . . , yi−1, θ) if i ∈ {C} Constrained set of tokens

0 otherwise

Generation stage, add additional tokens P to help with generation

p(yi) = p(yi|y1, . . . , yi−1, θ,P)

Which method affects accuracy?

Prob Learning (UofT) CSC412-Week 11 44 / 48

Constrained decoding

Figure: Pseudocode for Constrained decoding(Beurer-Kellner, 2024)

Prob Learning (UofT) CSC412-Week 11 45 / 48

Challenges of Constrained Decoding

Minimally invasive methods

Supports different techniques like Regex, CFGs, Templates

Low inference overhead

Paper from 2024 introduces DOMINO to handle these challenges
(Beurer-Kellner, 2024)

Figure: Method for DOMINO (Beurer-Kellner, 2024)

Prob Learning (UofT) CSC412-Week 11 46 / 48

Accuracy and Inference overhead

Figure: Method for DOMINO (Beurer-Kellner, 2024)

DOMINO uses a technique called speculative decoding, something we’ll
cover next lecture!

Prob Learning (UofT) CSC412-Week 11 47 / 48

Summary

Sparse Autoencoders are useful for finding features in models

MoE attempt to have parts of the model learn specific behaviors

Constrained decoding let’s us introduce smarter token sampling
when generating sequences

Prob Learning (UofT) CSC412-Week 11 48 / 48

