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Overview

● Motivation and Background
○ Why OpenAI creates CLIP (Contrastive Language-Image Pre-training)?

● Overview of CLIP Approach
● Model Architecture

○ Text and Image Encoder
○ Joint embedding space

● Contrastive Learning
○ Loss and Pseudo Code

● Dataset and Training Details
● Zero-shot Inference
● Summary

○ Key Advances of CLIP
○ Comparison with prior works
○ Future Directions



Motivation & Background

Let’s go back to Mid-2020

● Limitations of traditional supervised vision models 
○ fixed label sets
○ dataset-specific training

● Natural language supervision offers a scalable, rich source of training data.
○ (Transformer, BERT, GPT3 were out, nlp were at its prime time)
○ Instead of collecting/annotating labels, obtaining text description associate with each image

● Goal: Learn transferable visual representations without massive manual 
annotations



Overview of the CLIP Approach

● Learns a shared embedding space for images and text.
○ We seems to make great progress on Text side
○ How can we bring that to imaging world?

● Joint training of an image encoder and a text encoder on 400M (image, text) 
pairs.

○ Large easier obtainable data pairs instead of tedious human-labeling
○ Joint training with contrastive learning

● Enables zero-shot learning by using natural language to describe tasks.



CLIP Architecture – Dual Encoders

● Two main components:
○ Image Encoder: Can be a modified ResNet (e.g., RN50, RN101) or a Vision Transformer (ViT)
○ Text Encoder: A Transformer (with modifications like  byte pair encoding (BPE) tokenization)

● Both outputs are linearly projected into a common multimodal embedding 
space. 



Image Encoder Details

● ResNet modifications 
○ attention pooling replacing global average pooling, antialiased blur pooling

● Alternative: Vision Transformer with additional layer normalization

● Focus on scalability and computational efficiency.



Text Encoder Details

● Transformer architecture: 12 layers, 63M parameters, 8 attention heads.
○ GPT-3: 96 layers, 175B parameters, 96 attention heads, 12,288 hidden dimension, 2,048 

token context window, trained on 570GB of text data.

● Processes lower-cased, BPE-tokenized text (vocab size ≈49,152).

● Uses the [EOS] token representation, which is layer-normalized and linearly 
projected



Joint Multimodal Embedding Space

● Both encoders produce L2-normalized feature vectors.

● Linear projection maps these features into a shared embedding space.

● Cosine similarity (scaled by a learned temperature parameter) measures 
image–text compatibility.



Pre-training Objective – Contrastive Learning

● Contrastive loss: match correct image–text pairs and separate incorrect ones.

● Within a batch of N pairs, there are N² potential comparisons.
● Uses symmetric cross-entropy loss for image-to-text and text-to-image 

predictions.



Pseudocode & Loss Function



Pre-training Dataset & Data Augmentation

● Utilizes 400 million (image, text) pairs collected from the web.

● Simple image augmentation: random square crops on resized images.

● Diverse natural language captions provide supervision beyond fixed labels.



Training Details & Compute Considerations

● Optimizer: Adam with decoupled weight decay and cosine learning rate 
schedule.

● Very large minibatch size (e.g., 32,768) and mixed precision training. ***

● Scalable across various models (RN50, RN50x16, ViT variants) for high 
compute efficiency.



Zero-shot Transfer & Prompt Engineering

● Zero-shot classification: Generate text embeddings for class names or 
descriptions.

● Use prompt templates like “A photo of a {label}.” to provide context.
● Achieves competitive performance without any dataset-specific training.



Key Advances of CLIP

● Scalability: Efficient training on a massive dataset using contrastive learning

● Flexibility: Ability to generalize across tasks with zero-shot transfer

● Robustness: Better handling of distribution shifts compared to traditional 
supervised models



Comparison to Previous Approaches & Impact

● Contrast with traditional ImageNet supervised learning and prior zero-shot 
approaches (e.g., Visual N-Grams)

● Significant improvements in zero-shot accuracy (e.g., ImageNet performance)
● Broader impact: Influencing future research in multi-modal learning and 

zero-shot transfer ***



Limitations

“On most of these datasets, the performance of this baseline is now well below the 
overall state of the art. Significant work is still needed to improve the task learning 
and transfer capabilities of CLIP. While scaling has so far steadily improved 
performance and suggests a route for continued improvement, we estimate 
around a 1000x increase in compute is required for zero-shot CLIP to reach 
overall state-of-the-art performance. This is infeasible to train with current 
hardware. Further research into improving upon the computational and data 
efficiency of CLIP will be necessary.”



Conclusion & Future Directions

● Recap: Dual encoder architecture with contrastive pre-training enables 
zero-shot transfer. 

○ (draw the learning on the board)

● Highlights: Scalability, flexibility, and robustness achieved through natural 
language supervision.

● Future Directions: Explore improved few-shot learning, additional modalities, 
and enhanced prompt engineering.






