
CSC412
Probabilistic Learning and Reasoning

Week 10 Embeddings & Attention

Denys Linkov

University of Toronto

Prob Learning (UofT) CSC412-Week 10 1 / 73

Overview

Recap of NLP Tasks

Intro to Embeddings

Intro to Attention

Goal is to catch you up on LLMs for next two lectures

Prob Learning (UofT) CSC412-Week 10 2 / 73

NLP Tasks

Classification (Documents, Spans, Tokens)
▶ Hate speech detection
▶ Spam filtering
▶ Social Media drug adverse effect identification

Generation (Question Answering, Summarization, Free-text
generation, . . .)

▶ Translating natural language into SQL queries
▶ “Hey siri what is the weather like?”
▶ Chatbots
▶ Talk to a transformer

Prob Learning (UofT) CSC412-Week 10 3 / 73

https://transformer.huggingface.co/doc/gpt2-large

NLP Tasks

Regression (Essay scoring, like count prediction)
▶ How many retweets will this tweet get?

Information Extraction
▶ Who are the people mentioned in this text?
▶ What date was the procedure performed?

Document Retrieval
▶ Google search
▶ Automatic literature review
▶ “R” part of RAG

Prob Learning (UofT) CSC412-Week 10 4 / 73

NLP concepts

Some names we will be using throughout this lecture:

Token - A single “atom” of text, usually a word

Document - A complete datapoint of text

Span - A subset of a document, a group of Tokens

Vocabulary - A list of all possible tokens

Prob Learning (UofT) CSC412-Week 10 5 / 73

Spam

We begin by revisiting a familiar example from earlier lectures:
determining whether an email is spam or not.

What kind of task is it ?

How would you approach it?

More formally: Consider a set of observations (xi, yi)i=1:N where yi = 1
means datapoint i was spam, and xi is the text of the email.
Our goal is to create / learn a function fθ such that fθ(xi) = p(yi|xi)

Prob Learning (UofT) CSC412-Week 10 6 / 73

Heuristics

Perhaps it is possible to find some heuristics that work:

If xi contains any prescription medication name ŷi = 1

If xi is is mostly capital letters ŷi = 1

If xi contains ‘Make Amount every Time Period” ŷi = 1

Prob Learning (UofT) CSC412-Week 10 7 / 73

Can we learn simple heuristics?

To apply any kind of learning algorithms we have seen before we need
to convert x into a numerical representation h.

Given a vocabulary Vj=1:M , determine h such that: hj = 1
whenever token j from the vocabulary is present in x.

Each datapoint x is represented by an M dimensional vector of 0’s
and 1’s

How do we determine the vocabulary?

Just list and count all the words in all of the documents, and then
only keep the top M.

We have numerical features, so just plug them as input into any
‘standard” algorithm: Logistic Regression

Prob Learning (UofT) CSC412-Week 10 8 / 73

Bag of Words

This simple binary representation is called a (binary) Bag of Words.

What is included in the representation h of x?

What if we care about more than just the presence / abscence of a
specific word?

We could just include the count of each word turning h from a
vector of 1’s and 0’s into a vector of counts.

What about phrases? “Polyethylene Glicol”?

Prob Learning (UofT) CSC412-Week 10 9 / 73

N-Grams

Instead of words being entries in a vocabulary, use phrases.
An N-gram is a contiguous sequence of N tokens from a given text.
Under N = 1; also called unigrams

V = (“This”, “is”, “a”, “sentence”)

“This is a sentence” = (1, 1, 1, 1)

“A sentence” = (0, 0, 1, 1)

Under N = 2; also called bigrams

V = (“This is”, “is a”, “a sentence”)

“This is a sentence” = (1, 1, 1)

“A sentence” = (0, 0, 1)

Prob Learning (UofT) CSC412-Week 10 10 / 73

Common words

Some words are incredibly common, but do not contribute a lot in
terms of distinguishing between texts.

Virtually any text in English will contain “the” or “a”

Should we include those in the vocabulary?

Can we learn which words to include in the vocabulary?

We can better represent documents by the relative frequency of
words in them.

Note: in practice we often remove some words from all text and
ignore them completely throw all words in to train a LLM*. You
will see those referred to as stopwords

Prob Learning (UofT) CSC412-Week 10 11 / 73

Term Frequency

We can represent the “count” (Term Frequency) of a word in many
different ways:

Raw count of times it is present in x: BoW

Binarized count of times it is present in x: binary BoW

Count of times it is present in x divided by number of tokens in x

Raw count scaled by number of other terms (not count of) in x

Log of the raw count

Prob Learning (UofT) CSC412-Week 10 12 / 73

Term Frequency example

V = (“This”, “is”, “a”, “sentence”, “another”, “not”, “Yet”)
x1 =“This is a sentence. This is another sentence.”
x2 =“This is not a sentence. Yet another not a sentence”

Word TF(w, x1) TF(w, x2)

“This” 2 1
“is” 2 1
“a” 1 2
“sentence” 2 2
“another” 1 1
“not” 0 2
“Yet” 0 1

Table: Term Frequency (TF) for each document

Can be a raw count or a % of words in a document

Prob Learning (UofT) CSC412-Week 10 13 / 73

Inverse Document Frequency

Just like with term frequency, we can represent the “relative
prevalence” (Inverse Document Frequency) of a word in many
different ways:
Denote Nj =

∑N
i=1 I (Vj ∈ xi) count of datapoints that include j-th

word in the vocabulary. Denote N as the total number of documents

1

Nj

N

Nj

log(
N

Nj
)

log(
N

Nj + 1
)

This is a scaling factor for how often words occur across documents
Prob Learning (UofT) CSC412-Week 10 14 / 73

IDF Calculation

Word Docs with w DF(w) IDF(w)

“This” x1, x2 2 log10(
2
2) = log10(1) = 0

“is” x1, x2 2 log10(
2
2) = log10(1) = 0

“a” x1, x2 2 log10(
2
2) = log10(1) = 0

“sentence” x1, x2 2 log10(
2
2) = log10(1) = 0

“another” x1, x2 2 log10(
2
2) = log10(1) = 0

“not” x2 1 log10(
2
1) = log10(2) ≈ 0.301

“Yet” x2 1 log10(
2
1) = log10(2) ≈ 0.301

Table: Document Frequency (DF) and Inverse Document Frequency (IDF)

Prob Learning (UofT) CSC412-Week 10 15 / 73

TF-IDF

By combining Term Frequency with Inverse Document Frequency we
can measure how common the word is in a particular datapoint relative
to other documents.

TF-IDF(x) = TF (x)× IDF (x)

Word TF(w, x2) IDF(w) TF-IDF(w, x2)

“This” 1 0 1× 0 = 0
“is” 1 0 1× 0 = 0
“a” 2 0 2× 0 = 0
“sentence” 2 0 2× 0 = 0
“another” 1 0 1× 0 = 0
“not” 2 0.301 ≈ 0.602
“Yet” 1 0.301 ≈ 0.301

Table: TF-IDF for Document x2

Prob Learning (UofT) CSC412-Week 10 16 / 73

TF-IDF and BOW in Search

Search is an important problem and one baseline is called BM25.

Given a query Q, containing keywords q1, ..., qn, the BM25 score of
a document D is:

score(d, q) =
∑
w∈q

IDF(w) · TF(w, d) · (k1 + 1)

TF(w, d) + k1 · (1− b+ b · |d|
avgdl)

k1 (Term Frequency Saturation):
▶ Controls how quickly term frequency saturates (TF being 5, 20)
▶ Typical range: [1.2, 2.0].

b (Document Length Normalization):
▶ Controls the degree of document length normalization.
▶ b = 1: Full length normalization. Longer documents are penalized

more heavily.
▶ b = 0: No length normalization. Equivalent to disabling length

normalization.
▶ Typical value: 0.75.

Prob Learning (UofT) CSC412-Week 10 17 / 73

Generalizable Representations

What if we don’t want to use words or skip-grams?

How do we classify, retrieve or utalize more abstract concepts

We can train an embedding model to map concepts into a latent
space

We did this with our Autoencoders

Let’s talk more generally about embeddings

Prob Learning (UofT) CSC412-Week 10 18 / 73

Embeddings

All of the methods we talked about can be used to generate numerical
representations of whole documents, by the use of just the word
occurences, and simple functions. We say that hi is the embedding of
xi, and we call g(x) = h an embedding function. We can then re-frame
our problem of learning fθ(x) = y as:

fθ(x) = cθ1(h) = cθ1(gθ2(x)) = y

Where cθ is any classification / regression function, and gθ is an
embedding function.

Embeddings are not restricted to documents.

How could we embed an image?

What if our datapoint consists of an image and text?

Prob Learning (UofT) CSC412-Week 10 19 / 73

Why are embeddings useful?

A function that can map text, images or other information into
the same space is useful

Compare similarity in a latent space

Allow us to search, clustering, semi-supervised learning, etc

Figure: Multi Modal Clustering - Bert Topic - (Grootendorst, 2022)

Prob Learning (UofT) CSC412-Week 10 20 / 73

Why are embeddings useful? Cont.

Finetune models on top of embeddings

Use transfer learning from one trained model to another

Create a linear head or linear probe to create a mapping between
the embeddings to some classes

Figure: Modeling with DistilBert - (Alammar, 2018)

Prob Learning (UofT) CSC412-Week 10 21 / 73

Token classification

Sometimes we care about something more granular than just the whole
document. Perhaps we want to identify each parts of text that
correspond to certain concepts:

What should we get a represantation of?

How could we do this?

1from SpaCy: https://explosion.ai/demos/displacy-ent
Prob Learning (UofT) CSC412-Week 10 22 / 73

Word2Vec

We start with a fairly strong assumption: “Words that have similar
meanings will occur in similar contexts” Based on that we define a
context of size k of token xi,j

1as a set of tokens:

context(xi,j) = {xi,j−k, xi,j−(k−1), . . . , xi,j−1, xi,j+1, . . . xi,j+k}

Then given a set of datapoints xi=1:N,j=1:Mi and a vocabulary Vr=1:R

we define an unsupservised learning task of predicting what words
occur in the context of each word in the vocabulary. More formally,
given a sequence of training words x1, . . . , xT we want to maximize the
average log probability:

1

T

T∑
t=1

∑
j∈context(t)

logp(wj |wt)

1This is also called a skip-gram
Prob Learning (UofT) CSC412-Week 10 23 / 73

Skip Gram Continued

The basic formulation of p(x|w) uses the softmax function:

p(x|w) =
exp

(
(u(w)T (v(x)

)∑R
r=1 exp ((u(w))

T (v(Vr)))

where u(w) is the “word” and v(w) is the “context” representation of
word w i.e the bBOW.

In our particular case we will take u and v to be simple linear
projections of the one-hot (binary BoW) encoding of the word,
and context respectively.

u(w) = bBoW (w)UT

The matrix U will be of size R× e where e is the embedding
dimension, which is a hyperparameter you chose.

Prob Learning (UofT) CSC412-Week 10 24 / 73

Skip Gram continued

Thinking about this visually we take v(x) multiply it by the embedding
matrix U, get a represemtation u(w), multiply by U’ and get our
predicted context words. A nice visual below with some different
notation.

Figure: Visual example from (Pythonic Excursions, 2019)

Prob Learning (UofT) CSC412-Week 10 25 / 73

Skip Gram Continued

Notice that the the bBoW(w) is a binary vector with all 0’s and a
single 1 at the index of word w in the Vocabulary!
Similarily we define v(w) to be a linear projection that back from u(w)
to predict each word in the context.

1“Efficient Estimation of Word Representations in Vector Space”, Mikolov et al
Prob Learning (UofT) CSC412-Week 10 26 / 73

Skip Gram Vis

How to estimate p(“car”|“ants”)?

1Image from:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Prob Learning (UofT) CSC412-Week 10 27 / 73

Word2Vec

The training process is then as follows:

Initialize the two matrices

Sample pairs of words (wi, wj) and compute the objective

Gradient Descent based on the objective.

After convergence keep only the matrix U

Embedding of word at vocabulary index i is just the i-th row of U

1Image from:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Prob Learning (UofT) CSC412-Week 10 28 / 73

Word2Vec notes

In practice this training procedure is not feasible - we would have
to compute softmax over the entire vocabulary at every step.

There are a lot of tricks and improvements over the years - really
worth reading the original paper.

There is another possible objective called Continuous Bag of
Words (CBoW) that is the exact opposite of the Skip Gram
Objective - estimate the word given context instead of context
given word.

Prob Learning (UofT) CSC412-Week 10 29 / 73

Token Classification and Embeddings continued

To classify tokens, we can just take the Word2Vec embedding of
each token as an input to e.g. Linear Regression / Multinomial
Naive Bayes, and estimating probabilities that the token belongs
to a certain category.

We can combine Word2Vec representations into document level
representations.

We can combine Different embedding methods! Nothing is
stopping you from taking TF-IDF vector of a document and
“stacking” the average of all Word2Vec vectors in the document.

Prob Learning (UofT) CSC412-Week 10 30 / 73

Sequence 2 Sequence Tasks

What if our output should also be in the form of text?

Re-frame the “context” to only feature words before the input

Train in the unsupervised setting of CBoW, with the modified
context.

Idea: Sample the next word, conditional on the previous k based
on the CBoW softmax.

What kind of model is that?

Prob Learning (UofT) CSC412-Week 10 31 / 73

Similarity

What does it mean for 2 words to be similar?

What does it mean for 2 datapoints to be similar?

The most common way to measure similarity in NLP is via the
cosine similarity

We define cosine similarity between two vectors to be:

cosine sim(x, y) =
x · y

||x|| · ||y||
=

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

This is especially convenient for binary BoW.

Prob Learning (UofT) CSC412-Week 10 32 / 73

Some Cool properties of W2V

Let h(x) be the Word2Vec embedding of the word x. We can perform
some vector algebra to find that:

h(“Athens”)− h(“Greece”) + h(“Germany”) ≊ h(“Berlin”)

h(“Mice”)− h(“Mouse”) + h(“Dollar”) ≊ h(“Dollars”)

In the original paper they propose a set of 14 categories and
evaluate accuracy on these kinds of “algebraic” operations to find
an accuracy of ∼ 55− 60%

You can just download the original Word2Vec embeddings and play
around!

Prob Learning (UofT) CSC412-Week 10 33 / 73

Modern tokenizers

Tokenizers want to encode information into a useful way for LLMs

Most LLMs have custom trained tokenizers, trying to make
internet training efficient

LLaMa 3 and DeepSeekv3 - 128k vocab size, GPT-4o - 200k

Can also tokenize images

Figure: Paligemma Model - (Beyer et al, 2024)

Prob Learning (UofT) CSC412-Week 10 34 / 73

Training a modern tokenizer

Few approaches, find a good corpus of data

Can focus on compression of information or representation

GPT3, GPT4 - GPT4o reduce tokens in other languages

Figure: Token Comparisons Blog (Linkov,
2023)

Figure: GPT-4o Tokenizer
changes (OpenAI, 2024)

Prob Learning (UofT) CSC412-Week 10 35 / 73

Modern embedding vector

As we saw from previous embeddings, the representation is some
kind of vector. But words a limiting.

Let’s take context into account

Idea - Use high dimensional space to create some latent variables

How can we use embeddings for other tasks? Attach layers
afterwards

Prob Learning (UofT) CSC412-Week 10 36 / 73

Training an embedding model - Contrastive Learning

Given a dataset X, at each training step, pick samples xi, v
+
i , v

−
i and

train an embedding function fθ s.t.:

fθ(x) ≈ fθ(v
+
i)

but not
fθ(x) ̸≈ fθ(v

−
i)

Some examples:

L(x, v−, v+) = −max(f(x)T f(v−)− f(x)T f(v+) +m, 0)

L(x, v−, v+) = −log

(
exp(f(x)

T f(v+)
τ)

exp(f(x)
T f(v+)
τ) + exp(f(x)

T f(v−)
τ)

)

Prob Learning (UofT) CSC412-Week 10 37 / 73

How to pick positive and negative examples?

Class labels are usually a good idea

Example Image Classificaiton

Figure: Augmenting Images from SimCLR - (Chen, 2020)

Prob Learning (UofT) CSC412-Week 10 38 / 73

SimCLR - Visual

Figure: Augmenting Images from SimCLR - (Chen, 2020)

Prob Learning (UofT) CSC412-Week 10 39 / 73

SimCLR - Algorithm

Figure: Training Algorithm - (Chen, 2020)

Prob Learning (UofT) CSC412-Week 10 40 / 73

Embedding models benefit from contrastive learning

Goal is to generate a model that can map similar concepts

Many tasks: classify, cluster, rerank, etc

Figure: Models and task accuracy - (Wang, 2024)

Prob Learning (UofT) CSC412-Week 10 41 / 73

Training an embedding model - E5

Typically Three phases
▶ Base Model ex BERT
▶ Unsupervised/SemiSupervised Pre-training
▶ Supervised training

Figure: Weakly Supervised Pre-training - (Wang, 2024)

Prob Learning (UofT) CSC412-Week 10 42 / 73

Intro to RAG - Retrieval

RAG is used as a way to provide a LLM with more relevant
context to complete a task

RAG Architecture - use an embedding model to retrieve relevant
information

Usually this means the LLM objective shifts from generation to
summarization

Commonly extensions are to use Keyword searches or even graph
structures with available

Prob Learning (UofT) CSC412-Week 10 43 / 73

RAG Architecture

RAG is used as a way to provide a LLM with more relevant
context to complete a task

Contains three main parts:
▶ Preprocess information into searchable form
▶ Retrieve relevant chunks of information
▶ Generate using LLM based on prompt and chunks

Prob Learning (UofT) CSC412-Week 10 44 / 73

RAG Architecture

Prob Learning (UofT) CSC412-Week 10 45 / 73

RAG Architecture

Prob Learning (UofT) CSC412-Week 10 46 / 73

RAG Architecture

Prob Learning (UofT) CSC412-Week 10 47 / 73

Summary

The first modelling step with any data should be to convert it to a
numerical representation.

We can learn embeddings from unlabelled data.

We can easily combine different kinds of embeddings to improve
how we represent data.

We have learned a number of different document, and token
embedding algorithms.

Human Language is hard!

Prob Learning (UofT) CSC412-Week 10 48 / 73

Part 2

Neural Network Building Blocks
▶ Residual Layers
▶ Recurrent Layers
▶ Attention

Neural Networks
▶ Recurrent
▶ Transformer

Transformer
▶ Encoder
▶ Decoder
▶ Positional Encoding
▶ GPT
▶ Attention improvements
▶ RAG

Prob Learning (UofT) CSC412-Week 10 49 / 73

Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

y = f(x; θ) = ϕ(Wx+ b) + x

Prob Learning (UofT) CSC412-Week 10 50 / 73

Building Blocks of Neural Networks

When it comes to modelling sequential data (e.g. text, time series), it
is often useful to make the model stateful in order for it to help “carry”
the information through the graph. To do that we simply add a state
at timepoint t: st, and computing the output and the new state using
some function:

(y, st+1) = f(x, st)

This is then called a recurrent layer.

Prob Learning (UofT) CSC412-Week 10 51 / 73

RNN

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(x, h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will
depend on previous predictions.

Prob Learning (UofT) CSC412-Week 10 52 / 73

Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the
state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states

2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.

Prob Learning (UofT) CSC412-Week 10 53 / 73

Attention is all you need

We can create hidden states by learning different representations

Create the Query, Key and Value Matricies

Comes from an information retrieval background

Figure: Illustrated Transformer - (Alammar, 2018)

Prob Learning (UofT) CSC412-Week 10 54 / 73

Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q = WQx

k = WKx

v = W V x

We then define the Attention Layer as:

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

Where α is the scoring function.

Prob Learning (UofT) CSC412-Week 10 55 / 73

(Dot product) Attention is all you need

Attn(q, k, v) =

m∑
i=1

αi(q, ki)vi

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k and q vectors.

b(q, k) =
qTk√
d

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights αi to be the softmax of all
the scores:

αi(q, ki) =
exp(b(q, ki))∑m
j=1 exp(b(q, kj))

Prob Learning (UofT) CSC412-Week 10 56 / 73

(Dot product) Attention is all you need

The entire process then reduces to:

Y = Attn(Q,K, V) = σ(
QKT

√
d

)V

= σ(
WQX(WKX)T√

d
)W V X

Prob Learning (UofT) CSC412-Week 10 57 / 73

Attention Visualization

Prob Learning (UofT) CSC412-Week 10 58 / 73

Multi Head Attention and Self Attention

In practice it is advantageous to have multiple “attention heads” each
with a different set of WQ,WK ,W V matrices.

Why do you think that is?

Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o = MHA(Q,K, V) = Concat(h1, . . . , hh)W
O

= Concat(Attn(Q1,K1, V1), . . . , Attn(Qh,Kh, Vh))W
O

Additionally, we can stack several identical Attention / MHA blocks on
top each other.

Prob Learning (UofT) CSC412-Week 10 59 / 73

MHA Illustration

Figure: Illustrated Transformer - (Alammar, 2018)

Prob Learning (UofT) CSC412-Week 10 60 / 73

Transformer

First proposed in a 2017 paper “Attention is all you need”, the
Transformer architecture consists of two stacks (called Encoder and
Decoder) of blocks:

Prob Learning (UofT) CSC412-Week 10 61 / 73

Transformer

The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.

The first is a Multi Head Self Attention mechanism, and the
second is a simple FFNN. Both of the sub-blocks have a residual
connection around them, followed by normalization.

Prob Learning (UofT) CSC412-Week 10 62 / 73

Transformer

Similarily, the Decoder is also a stack of 6 blocks.

However in addition to the two sub-blocks of the encoder, it
features a 3rd sub-block.

This 3rd sub-block performs multi-head attention over the output
of the encoder. This “encoder-decoder attention” layer uses Q
from the previous decoder layer, and K,V from the output of the
encoder.

Prob Learning (UofT) CSC412-Week 10 63 / 73

Transformer

What about inputs?

The input embedding is a learneable “static” token embedding
similar to the Word2Vec model we have seen in the lecture 9.

What is “Positional Encoding?”

It’s either a learneable (representing position in a sequence)
embedding, or a predefined embedding.

Prob Learning (UofT) CSC412-Week 10 64 / 73

Positional Encoding

Prob Learning (UofT) CSC412-Week 10 65 / 73

Positional Encoding

Prob Learning (UofT) CSC412-Week 10 66 / 73

How to train a Transformer

The original Transformer model was trained on an English ↔
German translations, where at each step the final decoder state
was fed into a simple Linear Layer followed by a softmax to
produce probabilities over next tokens.

Currently there are a large number of pre-training tasks (similar in
idea to W2V). One of the most common ones is Masked
Language Modelling, where we randomly replace 15% of tokens
with “[MASK]”, and the goal of the model is to predict back the
original token. BERT (Devlin, 2018) used this approach

The other approach is to predict the next token based on past
tokens only. GPT uses this architecture (Radford, 2018)

Prob Learning (UofT) CSC412-Week 10 67 / 73

GPT-1 Exerpt (Paraphrase)

Given an unsupervised corpus of tokens U = {u1, . . . , un}, maximize
the following likelihood:

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (1)

where k is the size of the context window, and the conditional
probability P is modeled using a neural network with parameters Θ.
Use multi-headed self-attention operation over the input context tokens
followed by position-wise feedforward layers to produce an output
distribution over target tokens:

h0 = UWe +Wp

hl = transformer block(hl−1) ∀l ∈ [1, n]

P (u) = softmax(hnW
T
e)

where U = (u−k, . . . , u−1) is the context vector of tokens, n is the
number of layers, We is the token embedding matrix, and Wp is the
position embedding matrix.

Prob Learning (UofT) CSC412-Week 10 68 / 73

Vision Transformers

Prob Learning (UofT) CSC412-Week 10 69 / 73

CLIP

Prob Learning (UofT) CSC412-Week 10 70 / 73

Are RNNs Dead?

Figure: RWKV - Attention free LLMs (Peng, 2021)

Figure: S4 State Space Model - (Gu, 2021)

Prob Learning (UofT) CSC412-Week 10 71 / 73

Modern Attention

Attention is expensive because it is quadratic in length

Linear attention - ex Sliding Windows

Figure: Attention Sink Example - (Xiao, 2023)

Grouped Query Attention (Ainslie, 2023)

Multi Latent Attention (Deepseek, 2024)

Flash Attention - GPU optimization (Dao, 2022)

Many LLMs use GQA (but architecture design details are sparse)

Prob Learning (UofT) CSC412-Week 10 72 / 73

Other questions to think about

Different types of attention, tradeoffs

Embedding vector size, precision and dimension

Limitations of RAG

Different forms of LLM training

Model training vs inference differences

Intercection of hardware and software

Prob Learning (UofT) CSC412-Week 10 73 / 73

