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Overview

@ Recap of NLP Tasks
Intro to Embeddings

Intro to Attention

Goal is to catch you up on LLMs for next two lectures
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NLP Tasks

e Classification (Documents, Spans, Tokens)
» Hate speech detection
» Spam filtering
» Social Media drug adverse effect identification
e Generation (Question Answering, Summarization, Free-text
generation, . ..)
» Translating natural language into SQL queries
“Hey siri what is the weather like?”
Chatbots
Talk to a transformer

>
>
>
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https://transformer.huggingface.co/doc/gpt2-large

NLP Tasks

o Regression (Essay scoring, like count prediction)
» How many retweets will this tweet get?

o Information Extraction
» Who are the people mentioned in this text?
» What date was the procedure performed?

@ Document Retrieval

» Google search
» Automatic literature review
» “R” part of RAG

Prob Learning (UofT) CSC412-Week 10 4/73



NLP concepts

Some names we will be using throughout this lecture:
e Token - A single “atom” of text, usually a word
e Document - A complete datapoint of text
@ Span - A subset of a document, a group of Tokens

@ Vocabulary - A list of all possible tokens
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Spam

We begin by revisiting a familiar example from earlier lectures:
determining whether an email is spam or not.

e What kind of task is it ?
e How would you approach it?

More formally: Consider a set of observations (z;, y;)i=1.x Where y; = 1
means datapoint ¢ was spam, and z; is the text of the email.
Our goal is to create / learn a function fp such that fg(x;) = p(yi|z:)
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Heuristics

Perhaps it is possible to find some heuristics that work:
e If x; contains any prescription medication name g; = 1
o If x; is is mostly capital letters ¢; = 1

o If x; contains ‘Make Amount every Time Period” ¢; =1

import

r a string is a spam email or not

edicine in :
if text.contains{medicine):
return
if text.upper() == text:
-
) (\$\d*) sk ( (
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Can we learn simple heuristics?

To apply any kind of learning algorithms we have seen before we need
to convert x into a numerical representation h.

e Given a vocabulary Vj—1.), determine h such that: h; =1
whenever token j from the vocabulary is present in z.

e Each datapoint z is represented by an M dimensional vector of 0’s
and 1’s

e How do we determine the vocabulary?
o Just list and count all the words in all of the documents, and then
only keep the top M.

@ We have numerical features, so just plug them as input into any
‘standard” algorithm: Logistic Regression
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Bag of Words

This simple binary representation is called a (binary) Bag of Words.

e What is included in the representation h of x?

e What if we care about more than just the presence / abscence of a
specific word?

@ We could just include the count of each word turning h from a
vector of 1’s and 0’s into a vector of counts.

e What about phrases? “Polyethylene Glicol”?
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N-Grams

Instead of words being entries in a vocabulary, use phrases.

An N-gram is a contiguous sequence of N tokens from a given text.
Under N = 1; also called unigrams

V = (“This”, “is”, “a”, “sentence” )
“This is a sentence” = (1,1,1,1)

“A sentence” = (0,0,1,1)
Under N = 2; also called bigrams

V = (“This is”, “is a”, “a sentence”)

“This is a sentence” = (1,1,1)

“A sentence” = (0,0,1)
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Common words

Some words are incredibly common, but do not contribute a lot in
terms of distinguishing between texts.

[T

Virtually any text in English will contain “the” or “a

Should we include those in the vocabulary?

Can we learn which words to include in the vocabulary?

We can better represent documents by the relative frequency of
words in them.

e Note: in practice we often—remove some-wordsfromal-textand
ignore-them—eompletely throw all words in to train a LLM*. You

will see those referred to as stopwords
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Term Frequency

We can represent the “count” (Term Frequency) of a word in many
different ways:

o Raw count of times it is present in x: BoW
@ Binarized count of times it is present in x: binary BoW
e Count of times it is present in x divided by number of tokens in x

e Raw count scaled by number of other terms (not count of) in x

Log of the raw count
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Term Frequency example

V = (“This”, “is”, “a”, “sentence”, “another”, “not”, “Yet”)
x1 =“This is a sentence. This is another sentence.”
zo =“This is not a sentence. Yet another not a sentence”

Word TF(w,z1) | TF(w,x2)
“This” 2 1
“is” 2 1
“a” 1 2
“sentence” 2 2
“another” 1 1
“not” 0 2
“Yet” 0 1

Table: Term Frequency (TF) for each document

Can be a raw count or a % of words in a document
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Inverse Document Frequency

Just like with term frequency, we can represent the “relative
prevalence” (Inverse Document Frequency) of a word in many
different ways:

Denote N; = Zi\il I (Vj € x;) count of datapoints that include j-th
word in the vocabulary. Denote N as the total number of documents

o
1
Nj
"]
N
Nj
° N
log( Nj)
"]
1Og(Nj 7

This is a scaling factor for how often words occur across documents
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IDF Calculation

Word Docs with w | DF(w) IDF (w)

“This” x1, X2 2 10%10(%) =logy(1) =0
“is” x1, T2 2 log1y(5) = logy(1) =0
“a” T1, T2 2 logy(3) = logi(1) =0
“sentence” | 1, 2 logo(3) = logj(1) =0
“another” | xy, o 2 logio(5) = logy(1) =0
“not” T 1 logyo(2) = logyo(2) ~ 0.301
“Yet” x9 1 logm(%) = log;((2) =~ 0.301

Table: Document Frequency (DF) and Inverse Document Frequency (IDF)
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TF-IDF

By combining Term Frequency with Inverse Document Frequency we
can measure how common the word is in a particular datapoint relative
to other documents.

TF-IDF(x) = TF(z) x IDF(x)

Word TF(w,z3) | IDF(w) | TF-IDF(w,x2)
“This” 1 0 1x0=0
“i8” 1 0 1x0=0
“a” 2 0 2x0=0
“sentence” 2 0 2x0=0
“another” 1 0 1x0=0
“not” 2 0.301 ~ 0.602
“Yet” 1 0.301 ~ 0.301

Table: TF-IDF for Document o
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TF-IDF and BOW in Search

Search is an important problem and one baseline is called BM25.

Given a query Q, containing keywords ¢, ..., ¢,, the BM25 score of
a document D is:

S R TF(w,d) - (k1 + 1)

= TF(w,d) + k- (1—b+b- o)

score(d, q)

k1 (Term Frequency Saturation):
» Controls how quickly term frequency saturates (TF being 5, 20)
» Typical range: [1.2, 2.0].
b (Document Length Normalization):
» Controls the degree of document length normalization.
» b= 1: Full length normalization. Longer documents are penalized
more heavily.
» b =0: No length normalization. Equivalent to disabling length
normalization.
» Typical value: 0.75.

Prob Learning (UofT) CSC412-Week 10 17 /73



Generalizable Representations

e What if we don’t want to use words or skip-grams?
e How do we classify, retrieve or utalize more abstract concepts

@ We can train an embedding model to map concepts into a latent
space

o We did this with our Autoencoders

Let’s talk more generally about embeddings
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Embeddings

All of the methods we talked about can be used to generate numerical
representations of whole documents, by the use of just the word
occurences, and simple functions. We say that h; is the embedding of
x;, and we call g(z) = h an embedding function. We can then re-frame
our problem of learning fp(x) =y as:

fo(x) = co,(h) = co,(90,(z)) =y

Where ¢y is any classification / regression function, and gy is an
embedding function.

e Embeddings are not restricted to documents.
o How could we embed an image?

o What if our datapoint consists of an image and text?
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Why are embeddings useful?

@ A function that can map text, images or other information into
the same space is useful

o Compare similarity in a latent space

o Allow us to search, clustering, semi-supervised learning, etc

Representative
images
Embed text,

images or both For each topi, find the best matching images
based on the most representative documents *|
Images |
i Dimensionality ; Topic
Embeddings | —> redacton e Clustering | —> representation
Clip-ViT-8-32 UMAP HDBSCAN CTF-IDF

Figure: Multi Modal Clustering - Bert Topic - (Grootendorst, 2022)
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Why are embeddings useful? Cont.

e Finetune models on top of embeddings

o Use transfer learning from one trained model to another

o Create a linear head or linear probe to create a mapping between
the embeddings to some classes

15% | 0 (negative) ~Model #2 Output

85% | 1 (positve) (el
/~ Logistic Regression
Model #2
\ © learn
Model #2 Input
Model #1 Output
N
DistiBERT \
Model #1 °
/
Model #1 Input 101 1037 17453 14726 19379 12758 2006 2203 102
tcLs) a  visually stunning  rum  ##ination  on love  [SEP]

Figure: Modeling with DistilBert - (Alammar, 2018)
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Token classification

Sometimes we care about something more granular than just the whole

document. Perhaps we want to identify each parts of text that
correspond to certain concepts:

When Sebastian Thrun rerson | started working on self-driving cars at 'Google ors | in [2007 , few people

outside of the company took him seriously. “I can tell you very senior CEOs of major car companies

would shake my hand and turn away because | wasn’t worth talking to,” said | Thrun cre | , now the co-founder and CEO

of online higher education startup Udacity, in an interview with Recode |earlier thi

e What should we get a represantation of?

e How could we do this?

'from SpaCy: https://explosion.ai/demos/displacy-ent
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Word2Vec

We start with a fairly strong assumption: “Words that have similar
meanings will occur in similar contexts” Based on that we define a
context of size k of token w; ; las a set of tokens:

COIlteXt(ﬂj‘i,j) = {a:i,j_k, ajm_(k_l), e ,:L‘i,jfl, .C[,‘Z"J'Jrl, . xi,j—i—k}

Then given a set of datapoints x;—1.n j—1.1, and a vocabulary V,—i.g
we define an unsupservised learning task of predicting what words
occur in the context of each word in the vocabulary. More formally,
given a sequence of training words x1,..., T we want to maximize the
average log probability:

1 T
=2 > logp(wj|w)

t=1 jecontext(t)

1This is also called a skip-gram
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Skip Gram Continued

The basic formulation of p(x|w) uses the softmax function:

p(z|w) = exp ((u(w)” (v(x))
2/ e () T(0(4)

where u(w) is the “word” and v(w) is the “context” representation of
word w i.e the bBOW.

@ In our particular case we will take u and v to be simple linear
projections of the one-hot (binary BoW) encoding of the word,
and context respectively.

u(w) = bBoW (w)U™

The matrix U will be of size R x e where e is the embedding
dimension, which is a hyperparameter you chose.
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Skip Gram continued

Thinking about this visually we take v(z) multiply it by the embedding
matrix U, get a represemtation u(w), multiply by U’ and get our
predicted context words. A nice visual below with some different
notation.

Yerue Ypred — Yerue
(V-dim) (V-dim)
4 3\
0 0.12 | man
X Winput h Whiuepue Ypred 0 0.21 | passes
(V-dim) (VX N) (N-dim) (N xV) (V-dim) ] 0.10 | sentence
0 0.06 | should
man 7| H ic=1
passes -
e 0] |03 2 02 . [,.3 01 o4 o
01 03 -11
H H 01 02 04 3
0 0.12 | man
the 1 07 3 N o 021 | passes
who 3 5 0.2 0 0.10 | sentence
0 0.06 | should
Input Layer Word-Embedding Hidden Word-Embedding Softmax Output ) Pe=2
one-hot matrix—a.k.a (Projection) matrix for context Layer of range 0 0.13 | the
encoded “Lookup table” Layer for words (the, who) [0,1) ! who
vector center word Sum=1
(passes) Prediction Error —a.k.a

function loss

Figure: Visual example from (Pythonic Excursions, 2019)
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Skip Gram Continued

Notice that the the bBoW(w) is a binary vector with all 0’s and a
single 1 at the index of word w in the Vocabulary!

Similarily we define v(w) to be a linear projection that back from u(w)
to predict each word in the context.

INPUT PROJECTION  OUTPUT

4 w2
/
/
/

/
/o wit)
/ /

w(t) —
NN wen
1 we2)

Skip-gram

L “Efficient Estimation of Word Representations in Vector Space”, Mikolov et al
CSC412-Week 10
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Skip Gram Vis

How to estimate p(“car”|“ants”)?

Output weights for “car”

softmax
Word vector for “ants” 3
% ex Probability that if you
D X g ) = randomly pick a word
S Zex by “ants” that it is “car”
300 features s nearby “ants”, that it is “car

Tmage from:
http:/ / mccormlckml com/2016/04/19/word2vec-tutorial-the-skip-gram-model /
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Word2Vec

The training process is then as follows:

o Initialize the two matrices

Sample pairs of words (w;, w;) and compute the objective
o Gradient Descent based on the objective.

o After convergence keep only the matrix U

e Embedding of word at vocabulary index i is just the i-th row of U
17 24 1
23 5 7
[0 0 01 0] x4 6 13| = [10 12 19]
10 12 19
11 18 25

Image from:
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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Word2Vec notes

o In practice this training procedure is not feasible - we would have
to compute softmax over the entire vocabulary at every step.

@ There are a lot of tricks and improvements over the years - really
worth reading the original paper.

@ There is another possible objective called Continuous Bag of
Words (CBoW) that is the exact opposite of the Skip Gram
Objective - estimate the word given context instead of context
given word.
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Token Classification and Embeddings continued

e To classify tokens, we can just take the Word2Vec embedding of
each token as an input to e.g. Linear Regression / Multinomial
Naive Bayes, and estimating probabilities that the token belongs
to a certain category.

@ We can combine Word2Vec representations into document level
representations.

o We can combine Different embedding methods! Nothing is
stopping you from taking TF-IDF vector of a document and
“stacking” the average of all Word2Vec vectors in the document.
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Sequence 2 Sequence Tasks

What if our output should also be in the form of text?

Re-frame the “context” to only feature words before the input

Train in the unsupervised setting of CBoW, with the modified
context.

Idea: Sample the next word, conditional on the previous k based
on the CBoW softmax.

e What kind of model is that?
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Similarity

e What does it mean for 2 words to be similar?
e What does it mean for 2 datapoints to be similar?

@ The most common way to measure similarity in NLP is via the
cosine similarity

We define cosine similarity between two vectors to be:

xzyz

Hl’l\ Hyll F\/ET

This is especially convenient for binary BoW.

cosine sim(x,y) =
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Some Cool properties of W2V

Let h(z) be the Word2Vec embedding of the word x. We can perform
some vector algebra to find that:

h(“Athens”) — h(“Greece”) + h(“Germany”) = h(“Berlin”)

h(“Mice”) — h(“Mouse”) + h(“Dollar”) = h(“Dollars”)

o In the original paper they propose a set of 14 categories and
evaluate accuracy on these kinds of “algebraic” operations to find
an accuracy of ~ 55 — 60%

You can just download the original Word2Vec embeddings and play
around!
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Modern tokenizers

e Tokenizers want to encode information into a useful way for LLMs

Most LLMs have custom trained tokenizers, trying to make
internet training efficient

e LLaMa 3 and DeepSeekv3 - 128k vocab size, GPT-40 - 200k

e Can also tokenize images

Gemma:
2B Language Model

i
;
2
:

peaq [eaydon e uo 2an ¢

Figure: Paligemma Model - (Beyer et al, 2024)
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Training a modern tokenizer

e Few approaches, find a good corpus of data
e Can focus on compression of information or representation
e GPT3, GPT4 - GPT4o0 reduce tokens in other languages

Figure: Token Comparisons Blog (Linkov,
2023)
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Language tokenization

Gujarati 4 4x fewer tokens (from 145 t0 33)

Telugu 3.5x fewer tokens (from 159 to 45)

Tamil 33« fewer tokens (from 1160 35)

il g 40 D140 8. § s 4 stz e
s . ol g g
S, b 40, 3008,

S 05 e A 0. i)
o0 dodio!

1033)

g, el g
Sl 11 A3t 18] QI g 3 el

) .

Urdu 2 5x fewer tokens (from 820 33)

‘Arabic 2.0x fewer tokens (from 530 26)

s 1 ST et T e

5 K 1805 e s
1 L £ ol e

s d0n €5 61603 g ol

Figure: GPT-40 Tokenizer
changes (OpenAl, 2024)
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Modern embedding vector

o As we saw from previous embeddings, the representation is some
kind of vector. But words a limiting.

Let’s take context into account

e How can we use embeddings for other tasks? Attach layers
afterwards

Idea - Use high dimensional space to create some latent variables
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Training an embedding model - Contrastive Learning

Given a dataset X, at each training step, pick samples x;, vf ,v; and
train an embedding function fy s.t.:

fo(z) =~ fo(v;h)
but not
Jo(x) % fo(v;)

Some examples:

L(z,v™,v") = —max(f(2)" f(v7) = f(2)" f(vF) +m,0)

x T ’U+
o cap( L2V 1Y)
eap(FATICy | oy (T@TT07),
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How to pick positive and negative examples?

e Class labels are usually a good idea
e Example Image Classificaiton

A Simple Framework for Contrastive Learning of Visual

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Tlustrations of the studied data i Each ion can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

Figure: Augmenting Images from SimCLR - (Chen, 2020)
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SimCLR - Visual

E-:EDE-:EEI
..

[T W representation CITI T8 ]

m )
w augmentation
G}

Figure: Augmenting Images from SimCLR - (Chen, 2020)
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SimCLR - Algorithm

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {z}Y_; do
forallk € {1,...,N} do
draw two augmentation functions t~7, ¢/ ~T
# the first augmentation
Bop—1 = t(xx)

hog—1 = f(Zar-1) # representation
Zok—1 = g(har-1) # projection
# the second augmentation
To = t’(mk)
hoy, = f(Z2x) # representation
2 = g(hak) # projection
end for
foralli e {1,...,2N}andj € {1,...,2N} do
sig = 2] z;/(l|zillll 1) # pairwise similarity
end for
define £(i, j) as £(i, §)=—log wpy—oRlna/m)_____

SN Liks) exp(si,k/T)
L=k SN [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)

Figure: Training Algorithm - (Chen, 2020)
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Embedding models benefit from contrastive learning

o Goal is to generate a model that can map similar concepts
o Many tasks: classify, cluster, rerank, etc

# of datasets — Class. Clust. PairClass. Rerank Retr. STS Summ. Avg

12 11 3 4 15 10 1 56
Unsupervised models
Glove 573 27.7 70.9 433 216 619 289 420
BERT 61.7  30.1 56.3 434 106 544 298 383
SimCSE-BERT-unsup ~ 62.5 29.0 70.3 46.5 203 743 312 455
E5-PToman 670  41.7 78.2 53.1 408 688 327 543
E5-PThase 679 434 79.2 535 429 695 311 55.6
E5-PTiarge 69.0 443 80.3 544 442 699 326 566
Supervised models
SimCSE-BERT-sup 67.3 334 737 47.5 21.8 79.1 233 487
BERT-FT s 68.7 339 82.6 505 415 792 290 552
Contriever 66.7  41.1 825 53.1 419 765 304  56.0
GTRigrge 67.1 41.6 85.3 554 474 782 295 583
Sentence-T5yrge 723 417 85.0 540 367 818 296 571
ES5gman 71.7 395 85.1 545 460 809 314 589
ESpase 726 421 85.1 557 487 810 31.0 604
ESjacge 731 433 85.9 565 500 821 310 614
Larger models
GTRxx 674 424 86.1 567 485 784 306 59.0
Sentence-T5y 734 437 85.1 564 422 826 301 595

Figure: Models and task accuracy - (Wang, 2024)
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Training an embedding model - E5

e Typically Three phases
» Base Model ex BERT
» Unsupervised/SemiSupervised Pre-training
» Supervised training

data source type of text pairs random example # of pairs
q: Lexden History
‘Wikipedia (entity+section title, passage) ~ p: The site on which Lexden now stands was crossed =~ 24M
by the forti ions of iron age C
q: What makes a client good quality to you"
Reddit (post, upvoted comment) I’m putting together my ideal client .. 60M
p: Respectful of schedules. And pays on time.....
q: Central Intake Unit [ Broome County
Common Crawl (title, passage) p: Caseworkers from Central Intake assess the 69M
household and risk of pl. If eligible. ...
(title, answer) q: Will killing Python made problems for Apache
Stackexchange B Do p: Python and Apache aren’t related, unless your 19M
(title+description, answer) H .
app is making use of Python. ...
(title, abstract) q: Constructive Dual DP for Reservoir Optimization
S20RC (title, citation title) p: Dynamlc pmgmmmmg (DP) is a well established ~ 90M
(abstract, citation abstract) for ion of reservoir manage. .
N : LG Display reports Q1 operating loss as. .
News Egi"eﬁl?"’sfage) ) B April 25 (Routors) - South Korews LG Display  3M
ghlight, passage; Co Ltd reported its first quarterly operating loss. . .
Others misc. misc. 6M
All above - - ~ 270M

Figure: Weakly Supervised Pre-training - (Wang, 2024)
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Intro to RAG - Retrieval

o RAG is used as a way to provide a LLM with more relevant
context to complete a task

@ RAG Architecture - use an embedding model to retrieve relevant
information

@ Usually this means the LLM objective shifts from generation to
summarization

o Commonly extensions are to use Keyword searches or even graph
structures with available
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RAG Architecture

@ RAG is used as a way to provide a LLM with more relevant
context to complete a task
e Contains three main parts:

» Preprocess information into searchable form
» Retrieve relevant chunks of information
» Generate using LLM based on prompt and chunks
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RAG Architecture

Stage 1 - Pre-processing

Documents Chunks Vectors

| 10.1,03,12...]

Cats are...

cate
Embedding
Model
ot |—
Pie facts

— 03,01,02...]
—| ——| [0.7,0.1,06...]

Ice cream is..
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RAG Architecture

Stage 1 - Pre-processing Stage 2a - Retrieval

Documents Chunks Vectors

Cats are...

| 10.1,03,12...] '—-

cate
0.9
Embedding — Apple pie
Model
o |—
.| Similarity | | 0.87
Potos - g | 2

Ice cream is..

— ——| [07,04,06...] |—>]

0.85
Ice cream...

Stage 2 - Question/Search

Question

. 0 Embedding
¥ ]
What is a popular type of pie? H Model |> | 04, 04,09 ... }—-
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RAG Architecture

Stage 1 - Pre-processing Stage 2a - Retrieval Stage 2b - Generation

Documents Chunks Vectors Prompt

Cats are... | [0.1,03,12...] '—-
car
0.9
Emhl;;dd::ng “ | Apple pie... \ You are a ple
expert based
Apple pie... — \ on the list of
\| facts answer
Similarity 0.87 the user "
3,0.1,02...] [—= — = | Apple P
IASED ] Score Made of ... _fb question pele Fie
Ice cream is... |——| ——| [07,01,06...] |—»| / {question}
| s | {facts}
Ice cream...

Stage 2 - Question/Search

Question

. 0 Embedding
¥ ]
What is a popular type of pie? H Model |> | 04, 04,09 ... }—-
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Summary

o The first modelling step with any data should be to convert it to a
numerical representation.

@ We can learn embeddings from unlabelled data.

@ We can easily combine different kinds of embeddings to improve
how we represent data.

We have learned a number of different document, and token
embedding algorithms.

Human Language is hard!
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Part 2

o Neural Network Building Blocks

» Residual Layers
» Recurrent Layers
» Attention

@ Neural Networks

» Recurrent
» Transformer

o Transformer

» Encoder

Decoder

Positional Encoding
GPT

Attention improvements
RAG

vV vy VY VvYyy
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Building Blocks of Neural Networks

If we begin stacking large number of layers together, the signal may get
squashed to zero, or blow up to infinity. Similar problem often happens
during the gradient computation back through the graph. To reduce
the effect of those problems we often propagate the signal to layers
further downstream, in what are called residual connections

x —_— —) Nonlinearity —) o —_— Y

y=f(z;0) =Wz +b)+x
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Building Blocks of Neural Networks

When it comes to modelling sequential data (e.g. text, time series), it
is often useful to make the model stateful in order for it to help “carry”
the information through the graph. To do that we simply add a state

at timepoint ¢: s;, and computing the output and the new state using
some function:

(Y, st+1) = f(z,51)

This is then called a recurrent layer.
Y St
LIS
/ AN
bt N B

X S

Figure 16.8: Recurrent layer.
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RNN

If we use recurrent layers in our neural network, the outcome is what
we typically call a Recurrent Neural Network, (of which there are
many variants). In the simplest possible option the function f(z,h) is
a simple FFNN. When training RNNs each item in a sequence is used
as input, however during inference each item in the sequence will
depend on previous predictions.

e+ hy hy hs
o0
() y1 Y2 1@

(a) (b)

Figure 16.12: Illustration of a recurrent neural network (RNN). (a) With self-loop. (b) Unrolled in time.
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Attention is all you need

What if instead of getting just the previous hidden state we were able
to take a look at a lot of the previous inputs at once? We could
combine all the previous hidden states. But can we do better? We can
score each of the hidden states by how well it is associated with the

state we will be predicting. At a high level the attention mechanism
consists of 3 simple steps:

1. Generate a score for each of the hidden states
2. Apply the softmax function to the scores

3. Multiply each of the hidden states by the output of the softmax
and add them together.
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Attention is all you need

@ We can create hidden states by learning different representations
o Create the Query, Key and Value Matricies

@ Comes from an information retrieval background

Input Thinking Machines

X [ X. [N

Queries Limm o[0T wa
Keys [ O3
Values v v-[ I wv

Figure: ustrated Transformer - (Alammar, 2018)
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Attention is all you need

Now the hard problem remains: how do we score each of the hidden
states? We will begin by creating 3 separate embeddings from each of
our inputs, by simply multipling them by (learned) matrices:

q:WQx
k=wEg
v=WV"x

We then define the Attention Layer as:
m

Attn(q, k,v) = Zal
=1

Where « is the scoring function.
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(Dot product) Attention is all you need

m
Attn(q, k,v) = Zal
=1

The most common choice of the attention function is called the dot
product attention. We obtain the scores by a normalized dot
product of the k& and ¢ vectors.

T
b(g, k) = q\/g

where d is a normalizing constant, usually the dimensionality of the
vectors. We then set our attention weights «; to be the softmax of all
the scores:

exp(b(g; ki)
>ty exp(b(g, kj))

ai((L kl) =
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(Dot product) Attention is all you need

The entire process then reduces to:

QK"
Y = Attn(Q, K, V) = o Nz 4
_ o WQX(\I/};KX)T WY x
Scaled Dot-Product Attention
T e —— CSC412-Week 10
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Attention Visualization
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Multi Head Attention and Self Attention

In practice it is advantageous to have multiple “attention heads” each
with a different set of W@, WX WV matrices.

e Why do you think that is?
@ Do we really need all of them?

We then simply concatenate the outputs of all of the attention heads
together and multiplied by one final matrix WO that is learned as well,
this is called Multi Head Attention.

o=MHA(Q,K,V) = Concat(hy,...,h,)W°
= Concat(Attn(Q1, K1,V1), ..., Attn(Qp, Kp, Vh))Wo

Additionally, we can stack several identical Attention / MHA blocks on
top each other.
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MHA TIllustration

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X W@
King = WK Qo
~ W ke
: B
w;Q
*In all encoders other than #0, T W1 K 01

we don't need embedding. I W,V K1
We start directly with the output g Vi }—|—|» EBEE

of the encoder right below this one

Figure: Illustrated Transformer - (Alammar, 2018)
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Transformer

First proposed in a 2017 paper “Attention is all you need”, the

Transformer architecture consists of two stacks (called Encoder and

Decoder) of blocks:

Output
Probabilities

'Add & Norm
Feed
Forward
Add & Norm

Multi-Head

Add & Norm

Feed Attention
Forward Nx
Nx Add & Norm Jey
(CAdd & Norm ]
'Add & Norm Vasked
Multi-Head Muiti-Head
Attention Attention
- —
L I
Positional Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.
S Prob Tearning (UofT) ] CSC412-Week 10
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Transformer

o The Encoder consists of a stack of 6 blocks. Each block is further
split into two distinct sub-blocks.

@ The first is a Multi Head Self Attention mechanism, and the
second is a simple FFNN. Both of the sub-blocks have a residual
connection around them, followed by normalization.

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention
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Transformer

e Similarily, the Decoder is also a stack of 6 blocks.

@ However in addition to the two sub-blocks of the encoder, it
features a 3rd sub-block.

@ This 3rd sub-block performs multi-head attention over the output
of the encoder. This “encoder-decoder attention” layer uses @)
from the previous decoder layer, and K,V from the output of the
encoder.

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Nx

Add & Norm

Masked
Multi-Head
Attention

==
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Transformer

e What about inputs?

@ The input embedding is a learneable “static” token embedding
similar to the Word2Vec model we have seen in the lecture 9.

e What is “Positional Encoding?”

e It’s either a learneable (representing position in a sequence)
embedding, or a predefined embedding.

Positional A
Encoding
Input
Embedding
Inputs
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Positional Encoding

for 20 words (rows) with an embeddina size of 512 (columns). You can see that it appears split in
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Positional Encoding
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How to train a Transformer

@ The original Transformer model was trained on an English >
German translations, where at each step the final decoder state
was fed into a simple Linear Layer followed by a softmax to
produce probabilities over next tokens.

e Currently there are a large number of pre-training tasks (similar in
idea to W2V). One of the most common ones is Masked
Language Modelling, where we randomly replace 15% of tokens
with “[MASK]”, and the goal of the model is to predict back the
original token. BERT (Devlin, 2018) used this approach

@ The other approach is to predict the next token based on past
tokens only. GPT uses this architecture (Radford, 2018)
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GPT-1 Exerpt (Paraphrase)

Given an unsupervised corpus of tokens U = {uy,...,u,}, maximize
the following likelihood:
LiU) = ZlogP(uﬂui,k,...,ui_1;®) (1)
i

where k is the size of the context window, and the conditional
probability P is modeled using a neural network with parameters ©.
Use multi-headed self-attention operation over the input context tokens
followed by position-wise feedforward layers to produce an output
distribution over target tokens:

ho =UW, + W,
h; = transformer_block(h;_1) VI € [1,n]
P(u) = softmax(h, W7)
where U = (u_g,...,u_1) is the context vector of tokens, n is the

number of layers, W is the token embedding matrix, and W), is the

position embedding matrix.
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Vision Transformers

on Transformer (ViT) Transformer Encoder

Transformer Encoder

| |

srmable
¢ [ Linear Projection of Flattened Patches ]
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Are RNNs Dead?

v6 7B Demo V7 3B Demo WebGPU Demo

Figure: RWKYV - Attention free LLMs (Peng, 2021)

Z o OO
.. —a\—> -
/\j Discretize ot Unroll
x=Ax+Bu > x = Ax +Bu > y=K*u
y =Cx+Du y =Cx+Du
Continuous Recurrent Convolutional
Representation Representation Representation

Figure: S4 State Space Model - (Gu, 2021)

(UofT) CSC412-Week 10 71/73




Modern Attention

e Attention is expensive because it is quadratic in length

e Linear attention - ex Sliding Windows

(a) Dense Attention (b) Window Attention © IS’hdmg x“:‘::: (d) StreamingL LM (ours)
|
] Fi —
@ [T Attention Sink
‘urrent Token &
s - (W [
—— Tachedtokens —> - oL recomputed . Lcached
tokens. tokens. tokens
O(T*x PPL:5641x  O(TL)v PPL: O(TL*X PPL:5.43v O(TL)v PPL:5.40v
Has poor efficiency and Breaks when initial Has to re-compute cache Can perform efficient and stable
performance on long text. tokens are evicted. for each incoming token. language modeling on long texts.

Figure: Attention Sink Example - (Xiao, 2023)

Grouped Query Attention (Ainslie, 2023)

e Multi Latent Attention (Deepseek, 2024)

e Flash Attention - GPU optimization (Dao, 2022)

e Many LLMs use GQA (but architecture design details are sparse)
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Other questions to think about

Different types of attention, tradeoffs

Embedding vector size, precision and dimension
Limitations of RAG
Different forms of LLLM training

Model training vs inference differences

Intercection of hardware and software

Prob Learning (UofT) CSC412-Week 10 73/73



