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Midterm exam

Exam will be held in person on Feb 24 and Feb 27 in-class.

Exams will be 100 points in total and 100 mins long.

Students are required to take the exam with their enrolled sections.

▶ Instructions 6:00 until 6:10
▶ Exam starts at 6:10 and ends at 7:50

Exam covers all lectures (weeks 1-6), it is closed book. You can use one optional A4
aid sheet - double-sided.
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Overview of topics

Exponential families formulation

MLE derivations

Decision theory

Bayes nets: Implied conditional independence and factorization

Markov Random Fields: Implied conditional independence and
factorization

Variable elimination: Complexity, order of elimination

Message passing: Belief propagation, purpose, convergence
properties on trees

Sampling/MCMC: Sampling tools, how to use Simple Monte Carlo

Variational Inference: Objectives, KL divergence, properties
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Exponential families

Density of a member of exponential families is of the form

p(x|η) = h(x) exp{ηTT (x)−A(η)}

Here,
T (x) : Sufficient statistics

η : Natural parameter

A(η) : log-partition function

h(x) : carrying density

Examples of exponential familes are
▶ Bernoulli, Gaussian, Gamma, exponential, Poisson etc.
▶ defines a broad class of distributions
▶ Moments of sufficient statistics can be found easily by

differentiating the log-partition function.
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Decision theory: Expected loss

Minimizing the misclassification rate:

We use a loss function to measure the loss incurred by taking
any of the available decisions.

Consider medical diagnosis example: example of a loss matrix:
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Directed Acyclic Graphical Models (Bayes’ Nets)

A directed acyclic graphical model
(DAGM) implies a factorization of the
joint distribution.

Variables are represented by nodes,
and edges represent dependence.

DAGM induces the following factorization of the joint distribution of
random variables x1, x2, . . . , xN , we can write:

p(x1, . . . , xN ) =

N∏
i=1

p(xi|x1, . . . , xi−1) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.
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Bayes Ball: Rules for active/inactive triples

Arrows: paths the balls can
travel

Arrows with bars: paths the
balls cannot travel

Notice balls can travel
opposite to edge directions!
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Markov Random Fields

Markov random fields (MRFs), are a set of random variables
where the dependencies are described by an undirected graph.

Lets see how to factorize the undirected graph of our running example:

p(x) ∝ψ1,2,3(x1, x2, x3)ψ2,3,5(x2, x3, x5)ψ2,4,5(x2, x4, x5)ψ3,5,6(x3, x5, x6)

× ψ4,5,6,7(x4, x5, x6, x7)
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Representing potentials

If the variables are discrete, we can represent the potential functions as
tables of (non-negative) numbers

p(A,B,C,D) =
1

Z
ψA,B(A,B)ψB,C(B,C)ψC,D(C,D)ψA,D(A,D)

where

Note that these potentials are not probabilities, but instead encode
relative affinities between the different assignments. For example, in
the above table, a0, b0 is taken to be 30X more likely than a1, b0.
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Variable elimination

Order which variables are marginalized affects the computational cost!

Main tool in exact inference is variable elimination:

A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

Has computational complexity that depends on the graph
structure of the model.

Sum-product is used to obtain marginals.
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Complexity of Variable Elimination Ordering

Different elimination orderings will involve different number of
variables appearing inside each sum.

The complexity of the VE algorithm is

O(mkNmax)

where
▶ m is the number of initial factors.
▶ k is the number of states each random variable takes (assumed to

be equal here).
▶ Ni is the number of random variables inside each sum

∑
i.

▶ Nmax = maxiNi is the number of variables inside the largest sum.
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Inference in Trees

Joint distribution is

p(x1:n) =
1

Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

ψij(xi, xj).

Want to compute p(x3|x̄2, x̄4, x̄5).
We have

p(x3|x̄2, x̄4, x̄5) ∝ p(x3, x̄2, x̄4, x̄5).

Let’s write the variable elimination algorithm.

Prob Learning (UofT) CSC412-Week 8 12 / 23



Inference in Trees

Slide credit: S. Ermon
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Message Passing on Trees

The message sent from variable j to i ∈ N(j) is

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)/i

mk→j(xj)

▶ If xj is observed, the message is

mj→i(xi) = ψj(x̄j)ψij(xi, x̄j)
∏

k∈N(j)/i

mk→j(x̄j)

In trees, if the marginal we want to compute is chosen as the root
node, a single pass from leaves to root is enough.
To compute all marginals, two passes are needed: one from leaves
to root, one from root to leaves.
Once the message passing stage is complete, compute beliefs

b(xi) ∝ ψi(xi)
∏

j∈N(i)

mj→i(xi).

If it is not a tree, run loopy BP.
Prob Learning (UofT) CSC412-Week 8 14 / 23



Sum-product vs. Max-product

The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

For MAP inference, we maximize over xj instead of summing over
them. This is called max-product BP.

BP updates take the form

mj→i(xi) = max
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)̸=i

mk→j(xj)

MAP inference:
x̂i = argmax

xi

b(xi).
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Estimation method: Simple Monte Carlo

Estimation problem using simple Monte Carlo:

Simple Monte Carlo: Given {x(r)}Rr=1 ∼ p(x) we can estimate
the expectation E

x∼p(x)
[ϕ(x)] using the estimator Φ̂:

Φ := E
x∼p(x)

[ϕ(x)] ≈ 1

R

R∑
r=1

ϕ(x(r)) := Φ̂

The fact that Φ̂ is a consistent estimator of Φ follows from the
Law of Large Numbers (LLN).

Easy to design estimators using simple Monte Carlo, e.g. practice
midterm.
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Estimation tool: Importance Sampling

Target p(x) can be evaluated up to normalizing constant p̃(x)

There is a simpler density, q(x) from which it is easy to sample
from and can evaluate up to normalizing constant q̃(x)

Sample: x(r) ∼ q(x) = q̃(x)/Zq

Importance sampling: estimate the expectation of a function ϕ(x).

Introduce weights: w̃r =
p̃(x(r))

q̃(x(r))

The importance weighted estimator
Φ̂iw =

∑R
r=1 ϕ(x

(r)) · wr

where wr =
w̃r∑R
r=1 w̃r
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Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.

1.1 The first, x, is generated from the proposal density q(x).
1.2 The second, u is generated uniformly from the interval [0, cq̃(x)]

(see figure (b) above: book’s notation P ∗ = p̃, Q∗ = q̃).

2. Accept or reject the sample x by comparing the value of u with
the value of p̃(x)

2.1 If u > p̃(x), then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples {x(r)} and

the value of u discarded.
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Hidden Markov Models

Important DAGMs to simplify the joint distribution.

Posterior inference takes the special form:

p(zt|x1:T ) ∝p(zt, x1:t)p(xt+1:T |zt)
∝(Forward Recursion)(Backward Recursion)

Forward-backward algorithm to compute p(zt|x1:T )
Viterbi algorithm to compute the most probable sequence.

ẑ = argmax
z1:T

p(z1:T |x1:T )
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Variational Inference: KL divergence

We will measure the difference between q and p using the
Kullback-Leibler divergence

KL(q(z)||p(z)) =
∫
q(z) log

q(z)

p(z)
dz

or =
∑
z

q(z) log
q(z)

p(z)

Properties of the KL Divergence

KL(q||p) ≥ 0

KL(q||p) = 0 ⇔ q = p

KL(q||p) ̸= KL(p||q)
KL divergence is not a metric, since it’s not symmetric
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Information (I-)Projection:

I-projection: q∗ = argminq∈QKL(q||p) = Ex∼q(x) log
q(x)
p(x) :

p ≈ q =⇒ KL(q||p) small

I-projection underestimates support, and does not yield the
correct moments.

KL(q||p) penalizes q having mass where p has none.

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)
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Moment (M-)projection

M-projection: q∗ = argminq∈QKL(p||q) = Ex∼p(x) log
p(x)
q(x) :

p ≈ q =⇒ KL(p||q) small

KL(p||q) penalizes q missing mass where p has some.

M-projection yields a distribution q(x) with the correct mean and
covariance.

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)
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Summary

Review lectures.

Solve the practice midterm.

Good luck!
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