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Midterm exam

@ Exam will be held in person on Feb 24 and Feb 27 in-class.
@ Exams will be 100 points in total and 100 mins long.

@ Students are required to take the exam with their enrolled sections.

» Instructions 6:00 until 6:10
» Exam starts at 6:10 and ends at 7:50

@ Exam covers all lectures (weeks 1-6), it is closed book. You can use one optional A4
aid sheet - double-sided.
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Overview of topics

e Exponential families formulation

e MLE derivations

@ Decision theory

@ Bayes nets: Implied conditional independence and factorization

o Markov Random Fields: Implied conditional independence and
factorization

e Variable elimination: Complexity, order of elimination

o Message passing: Belief propagation, purpose, convergence
properties on trees

e Sampling/MCMC: Sampling tools, how to use Simple Monte Carlo

e Variational Inference: Objectives, KL divergence, properties
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Exponential families

@ Density of a member of exponential families is of the form

p(x[n) = h(z) exp{n’ T (z) — A(n)}
Here,
T'(x) : Sufficient statistics
71 : Natural parameter
A(n) : log-partition function
h(zx) : carrying density

o Examples of exponential familes are
» Bernoulli, Gaussian, Gamma, exponential, Poisson etc.
» defines a broad class of distributions
» Moments of sufficient statistics can be found easily by
differentiating the log-partition function.
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Decision theory: Expected loss

e Minimizing the misclassification rate:

o

p(z,C1)

p(z,C2)

Ry R2
@ We use a loss function to measure the loss incurred by taking
any of the available decisions.
e Consider medical diagnosis example: example of a loss matrix:

Decision Incorrectly classify as healthy
cancer normal

cancer [ 0 1000
normal \ 1 0

Incorrectly classify as cancer

Truth
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Directed Acyclic Graphical Models (Bayes’ Nets)

o A directed acyclic graphical model
(DAGM) implies a factorization of the
joint distribution.

o Variables are represented by nodes,
and edges represent dependence.

DAGM induces the following factorization of the joint distribution of
random variables x1, 9, ..., TN, We can write:

N

N
p(x1,...,xN) = Hp(a:i|x1, Cey L) = Hp(xi|parents(x,’))
i=1 i=1
where parents(z;) is the set of nodes with edges pointing to ;.
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Bayes Ball: Rules for active/inactive triples

X Y z

O=@=0

— o—»

Inactive path

Y
VAN
x  [Inactive path VA

X Active path VA
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X Y z
O—0O—0O
Acti:/:_;ath
Y
e Arrows: paths the balls can
AN travel
o Arrows with bars: paths the
¥ Acivepah balls cannot travel

@ Notice balls can travel
X Inactive path Z

opposite to edge directions!
N/

Y
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Markov Random Fields

e Markov random fields (MRFs), are a set of random variables
where the dependencies are described by an undirected graph.

Lets see how to factorize the undirected graph of our running example:

p(x) ocpr 2 3(x1, T2, 3) 2 3 5(x2, T3, T5) P2 4 5(T2, T4, T5) Y3 5. 6(x3, 5, T6)
X Y4.5.6,7(T4, T5, Te, T7)
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Representing potentials

If the variables are discrete, we can represent the potential functions as

tables of (non-negative) numbers

P(A, B,C, D) = (A, BYs.c(B,C)ben(C, D)pan(A, D)

where
. y,[A, B ¢ [B.C] ¢,[C, D] w|D, A
CA)
“\ A B 30 | &0 100 | & & 1 | & o 100
s ® a® b5 w0 1 & db 100 | & b 1
\\ a0 1 [ 1 ¢ d® 100 4 o 1
\E)/ al bt 10 bt 100 et dt 1 d' a' 100

Note that these potentials are not probabilities, but instead encode
relative affinities between the different assignments. For example, in
the above table, a?, b° is taken to be 30X more likely than a',b°.
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Variable elimination

Order which variables are marginalized affects the computational cost! )

Main tool in exact inference is variable elimination:

e A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

o Has computational complexity that depends on the graph
structure of the model.

@ Sum-product is used to obtain marginals.
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Complexity of Variable Elimination Ordering

o Different elimination orderings will involve different number of
variables appearing inside each sum.

o The complexity of the VE algorithm is
O (mkNmax)

where

» m is the number of initial factors.

> k is the number of states each random variable takes (assumed to
be equal here).

» N; is the number of random variables inside each sum ).

> Npax = max; N; is the number of variables inside the largest sum.
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Inference in Trees

e Joint distribution is

ﬂfln = H@D xz H 7/’1] 5517$]

1€V (i,9)€€

e Want to compute p(x3|Z2, T4, T5).
e We have

p(x3|i27 i'47 :Z'E)) X p($3a f27 i‘4a i5)

- - = 1
POx3 | X2, Xa, XS):Z_E D b1 ()3 (xa) b2 (x2)va(Xa) s (Xs) 12 (X2, x1)%34(Xa, x3)335 (55 x3) 13 (x1 5 X3)
x1

o Let’s write the variable elimination algorithm.
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Inference in Trees

mai(

X4 X5

1
p(x3 | X2,%4,Xs5) ZE S~ w10xa)¥3(xs) w2 (%2)vba(Xa)¥s (X5 )12 (X2, x1) 34 (Xa x3) 35 (X5, X3)P13(x1, X3)
X1

1
= 7 Ya(Xa)¥3a(Xas x3) ¥5(X5)W35(Rs, x3) $3(x3) D 1 (x1)vu3(x1, x3) Ya(R2)¥12(R25 x1)
Xl S—

my3(x3) ms3(x3) mp1(x1)

= 2171/13 (x3)ma3(x3)ms3(x3) D w1 ()13 (xa, x3)man (xa)
x1

m13(x3)
3 (x3)ma3(x3)ms3(x3)m3(x3)
Pxg ¥3(x3)maz(x3)ms3(x3)m13(x3)

= ;Twa (x3)maz(x3)ms3(x3)m13(x3) =

Slide credit: S. Ermon
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Message Passing on Trees

e The message sent from variable j to i € N(j) is

mg—n xz E % Zj 1/%; xzaxj H MEk—j x]

Zj keEN(5)/1

» If z; is observed, the message is

mj—i(2:) = ¥;5(Z5)Yi5 (2, Z5) H Mk (T
keN(5)/i
@ In trees, if the marginal we want to compute is chosen as the root
node, a single pass from leaves to root is enough.
e To compute all marginals, two passes are needed: one from leaves
to root, one from root to leaves.
e Once the message passing stage is complete, compute beliefs

b(ai) oc i) [ mymilas).

JEN(i)

e If it is not a tree, run loopy BP.
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Sum-product vs. Max-product

The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

e For MAP inference, we maximize over z; instead of summing over
them. This is called max-product BP.

e BP updates take the form

mj—i(Ti) = max V;(@5)vij (i, ;) H Mk—;(7;)
kEN(§)#i

o MAP inference:

&; = argmax b(x;).
;
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Estimation method: Simple Monte Carlo

Estimation problem using simple Monte Carlo:

e Simple Monte Carlo: Given {z(M}2  ~ p(z) we can estimate

the expectation E( )[gb(m)] using the estimator ®:
z~p(x

LSS oy
vim B )= g3 o) d

o The fact that ® is a consistent estimator of ® follows from the
Law of Large Numbers (LLN).

e Easy to design estimators using simple Monte Carlo, e.g. practice
midterm.
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Estimation tool: Importance Sampling

e Target p(x) can be evaluated up to normalizing constant p(x)

@ There is a simpler density, g(x) from which it is easy to sample
from and can evaluate up to normalizing constant §(z)

Sample: 2" ~ g(z) = q(x)/Z,
Importance sampling: estimate the expectation of a function ¢(x).

) N 5(2()
o Introduce weights: w, = Zgz(”;

@ The importance weighted estimator
(I)iw = Ef:l Qﬁ(gj(r)) * Wy

— Wy
where w, = S o
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Sampling tool: Rejection sampling

The procedure is as follows:
1. Generate two random numbers.
1.1 The first, z, is generated from the proposal density ¢(z).
1.2 The second, u is generated uniformly from the interval [0, cg(x)]
(see figure (b) above: book’s notation P* = p, Q* = q).
2. Accept or reject the sample x by comparing the value of v with
the value of p(x)
2.1 If u > p(z), then x is rejected
2.2 Otherwise x is accepted; z is added to our set of samples {z(")} and
the value of u discarded.
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Hidden Markov Models

Important DAGMs to simplify the joint distribution.

Posterior inference takes the special form:

p(zt|zrr) ocp(zt, 21:4)p(Teq 17| 2e)
o (Forward Recursion)(Backward Recursion)

e Forward-backward algorithm to compute p(z;|x1.7)

@ Viterbi algorithm to compute the most probable sequence.

z = argmax p(z1.7|T1.7)
21:T
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Variational Inference: KL divergence

We will measure the difference between ¢ and p using the
Kullback-Leibler divergence

K L(q(2)|Ip(2)) = / 4(2) log ;@ i

(2)
_ N oe 1)
or—ZZ:q( )1 502

Properties of the KL Divergence
° KL(qllp) =0
o KL(q|lp)=0&q=p
o KL(q|lp) # KL(pllq)

o KL divergence is not a metric, since it’s not symmetric
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Information (I-)Projection:

a(z).

I-projection: ¢* = argmingeq K L(q||p) = Egyq(a) log (@)

e prq = KL(q||p) small

o [-projection underestimates support, and does not yield the
correct moments.

e K L(q||p) penalizes ¢ having mass where p has none.

p(z) is mixture of two 2D Gaussians and @ is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)

2o

p=Blue, g*=Red (two equivalently good solutions!)
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Moment (M-)projection

M-projection: ¢* = argmingeq K L(p|lq) = Epp(s) log %:
e prq — KL(p||q) small
e K L(p||q) penalizes ¢ missing mass where p has some.

e M-projection yields a distribution ¢(x) with the correct mean and
covariance.

p(x) is mixture of two 2D Gaussians and @ is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)

p=Blue, g*=Red
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Summary

e Review lectures.

@ Solve the practice midterm.
e Good luck!
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