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Overview: part 1

Hidden Markov Models

Forward / Backward Algorithm

Viterbi Algorithm
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Sequential data

We generally assume data was i.i.d, however this may be a poor
assumption:

Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

Recall the general joint factorization via the chain rule

p(x1:T ) =

T∏
t=1

p(xt|xt−1, ..., x1) where p(x1|x0) = p(x1).

But this quickly becomes intractable for high-dimensional data
-each factor requires exponentially many parameters to specify as
a function of T.

So we made the simplifying assumption that our data can be
modeled as a first-order Markov chain

p(xt|x1:t−1) = p(xt|xt−1)
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Sequential data

In certain cases, Markov chain assumption is also restrictive.

The state of our variables is fully observed. Hence, we introduce
Hidden Markov Models
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Hidden Markov Models (HMMs)

HMMs hide the temporal dependence by keeping it in the
unobserved state.
No assumptions on the temporal dependence of observations is
made.
For each observation xt, we associate a corresponding unobserved
hidden/latent variable zt

The joint distribution of the model becomes

p(x1:T , z1:T ) = p(z1)

T∏
t=2

p(zt|zt−1)

T∏
t=1

p(xt|zt)
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Hidden Markov Models (HMMs)

Unlike simple Markov chains, the observations are not limited by a
Markov assumption of any order. Assuming we have a homogeneous
model, we only have to know three sets of distributions

1. Initial distribution: π(i) = p(z1 = i). The probability of the
first hidden variable being in state i (often denoted π)

2. Transition distribution:
Ψ(i, j) = p(zt+1 = j|zt = i) i ∈ {1, ..., k}. The probability of
moving from hidden state i to hidden state j.

3. Emission probability: ψt(i) = p(xt|zt = i). The probability of
an observed random variable x given the state of the hidden
variable that ”emitted” it.
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HMMs: Objectives

We consider the following objectives:

1. Compute the probability of a latent sequence given an observation
sequence.
That is, we want to be able to compute p(z1:t|x1:t). This is
achieved with the Forward-Backward algorithm.

2. Infer the most likely sequence of hidden states.
That is, we want to be able to compute

z⋆ = argmax
z1:T

p(z1:T |x1:T ).

This is achieved using the Viterbi algorithm.

3. You have some HMM, let’s do prediction i.e p(x1:t|z1:t). Use a
forward pass algorithm using our hidden states.
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A future anthropologist studies ice-cream eating

You are a climatologist in the year 2799 studying the history of
global warming. You cannot find any records of the weather in
Baltimore, Maryland, for the summer of 2020, but you do find
Jason Eisner’s diary, which lists how many ice creams Jason ate
every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather
task by assuming there are only two kinds of days: cold (C) and
hot (H). (Eisner, 2002)

Given a sequence of observations xt of ice cream eaten, find the
weather events zt for each day.

All graphics from (SLP, 2024)
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The probabilities

Let’s define our variables

x ∈ {1, 2, 3} is the number of ice cream’s eaten

z ∈ {hot, cold} is the weather
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Most likely outcomes

Assume we have some model that Jason kept for us. We could
compute the joint probabilities p(x1, ..., xt, z1, ...zt)
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Forward algorithm

The goal is to recursively compute the filtered marginals,

αt(j) = p(zt = j|x1:t)

in a HMM,

Assuming that we know the initial p(z1), transition p(zt|zt−1), and
emission p(xt|zt) probabilities ∀t ∈ [1, T ].

This is a step in the forward-backward algorithm, which we’ll
reference later.
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Forward algorithm

The algorithm has two steps:

First one is the prediction step, in which we compute the
one-step-ahead predictive density; this acts as the new prior for
time t:

p(zt = j|x1:t−1) =
∑
i

p(zt = j|zt−1 = i)p(zt−1 = i|x1:t−1)

=
∑
i

Ψ(i, j)αt−1(i)

Next one is the update step,

αt(j) = p(zt = j|x1:t) = p(zt = j|x1:t−1, xt)

=
p(zt = j, x1:t−1, xt)

p(x1:t−1, xt)

=
p(xt, zt = j, x1:t−1)

p(x1:t−1, xt)

Prob Learning (UofT) CSC412-Week 6 12 / 51



Keep Going with our derivation

Update step continued

αt(j) =
p(xt, zt = j, x1:t−1)

p(x1:t−1, xt)

=
p(xt|zt = j, x1:t−1)p(zt = j|x1:t−1)

p(x1:t−1, xt)

∝ p(xt|zt = j, x1:t−1)p(zt = j|x1:t−1)

∝ p(xt|zt = j)p(zt = j|x1:t−1) MC assumption

= ψt(j)p(zt = j|x1:t−1)

Where the normalizing constant is

Zt = p(xt|x1:t−1) =
∑
j

p(zt = j|x1:t−1)p(xt|zt = j)
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This process is called the predict-update cycle.

Using matrix notation, we can write the update in the following
simple form:

αt ∝ ψt ⊙ (ΨTαt−1)

where

ψt(j) = p(xt|zt = j) is the local evidence at time t,

Ψ(i, j) = p(zt = j|zt−1 = i) is the transition matrix,

and ⊙ is the Hadamard (entrywise) product.
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Visualizing Forward Algorithm

**Will update the variables on the slide q=z, o=x
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Forward-Backward algorithm

The Forward-backward algorithm is used to efficiently estimate
the latent sequence given an observation sequence under a HMM.

That is, we want to compute

p(zt|x1:T ) ∀t ∈ [1, T ]

assuming that we know the initial p(z1), transition p(zt|zt−1), and
emission p(xt|zt) probabilities ∀t ∈ [1, T ].
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Forward-Backward algorithm

This task of hidden state inference breaks down into the following:

Filtering: compute posterior over current hidden state, p(zt|x1:t).
Prediction: compute posterior over future hidden state,
p(zt+k|x1:t).
Smoothing: compute posterior over past hidden state,
p(zk|x1:t) 1 < k < t.

The probability of interest, p(zt|x1:T ) is computed using a forward and
backward recursion

Forward Recursion: p(zt|x1:t)
Backward Recursion: p(x1+t:T |zt)
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Forward-Backward algorithm

We can break the chain into two parts, the past and the future, by
conditioning on zt:

We have

γt = p(zt|x1:T ) ∝p(zt, x1:T )
=p(zt, x1:t)p(xt+1:T |zt, x1:t)
=p(zt, x1:t)p(xt+1:T |zt)
∝(Forward Recursion)(Backward Recursion)

The third line is arrived at by noting the conditional independence
xt+1:T ⊥ x1:t|zt.
We know how to perform forward recursion from the previous part.
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Visualizing Backward
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Backward recursion

In the backward pass,

βt(i) = p(xt+1:T |zt = i)

=
∑
j

p(zt+1 = j, xt+1:T |zt = i)

=
∑
j

p(xt+2:T |zt+1 = j, zt = i, xt+1)p(xt+1|zt+1 = j, zt = i)p(zt+1 = j|zt = i)

=
∑
j

p(xt+2:T |zt+1 = j)p(xt+1|zt+1 = j)p(zt+1 = j|zt = i)

=
∑
j

βt+1(j)ψt+1(j)Ψ(i, j)

Notice that our backward recursion contains our emission, ψt+1 = p(xt+1|zt+1) and transition,
Ψ = p(zt+1|zt) probabilities.
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Backward recursion

In vector notation
βt = Ψ(ψt+1 ⊙ βt+1)

where βT (i) = 1.

Once we have the forward and the backward steps complete, we
can compute

γt(i) ∝ αt(i)βt(i).

which is called the forward-backward algorithm.

Recall

γt = p(zt|x1:T ) ∝p(zt, x1:t)p(xt+1:T |zt)
∝(Forward Recursion)(Backward Recursion)
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How do we find the most likely path of hidden states?

We can use a graph traversal algorithm! Example from wikipedia
Let’s assume we found another one of Jason’s journals, about how he’s
feeling

Figure: Define our
transition probabilities

Figure: Day 1
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How do we find the most likely path of hidden states?

We can use a graph traversal algorithm! Example from wikipedia

Figure: Day 2 Figure: Day 2 confirm
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How do we find the most likely path of hidden states?

We can use a graph traversal algorithm! Example from wikipedia

Figure: Day 3 Figure: Day 3 confirm
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Formalize this idea - Viterbi algorithm

The Viterbi algorithm (Viterbi 1967) is used to compute the most
probable sequence.

ẑ = argmax
z1:T

p(z1:T |x1:T )

Since this is MAP inference, we might think of replacing
sum-operators with max-operators, just like we did in
sum-product and max-product.

But this, in general, will lead to incorrect results.

In Viterbi algorithm, the forward pass does use max- product, but
the backwards pass uses a traceback procedure to recover the most
probable path.
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Viterbi algorithm

Let’s define
δt(j) = max

z1,..,zt−1

p(z1:t−1, zt = j|x1:t)

which is the probability of ending up in state j at time t, by taking
the most probable path.

We notice that

δt(j) = max
z1,..,zt−1

p(z1:t−1, zt = j|x1:t)

∝ max
z1,..,zt−1

p(z1:t−2, zt−1 = i|x1:t−1)p(zt = j|zt−1 = i)p(xt|zt = j)

=max
i
δt−1(i)Ψ(i, j)ψt(j)

Let’s keep track of the most likely previous state,

θt(j) = argmax
i
δt−1(i)Ψ(i, j)ψt(j).
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Summary of Viterbi Algorithm

Dynamic programming algorithm to find the most likely state
sequence for a given emission sequence in a Hidden Markov Model.

Time complexity: O(n · k2), where n is the length of the emission
sequence and k is the number of states. Much more efficient than
brute-force O(kn).

Applications:
▶ Speech recognition
▶ Part-of-speech tagging
▶ Gene finding
▶ and many more...
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Summary: HMMs

HMMs hide the temporal dependence by keeping it in the
unobserved state.

No assumptions on the temporal dependence of observations is
made.

Forward-backward algorithm can be used to find “beliefs”

Viterbi algorithm can be used to do MAP.

Next: Variational inference.
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Overview: part 2

Variational Inference

M-projection

I-projection

Naive mean-field approach
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Posterior Inference for Latent Variable Models

We’ve worked with a few latent variable models, such as the generative
image model and the trueskill model.
These models have a factorization p(x, z) = p(z)p(x|z) where

x are the observations or data,

z are the unobserved (latent) variables

p(z) is usually called the prior

p(x|z) is usually called the likelihood

The conditional distribution of the unobserved variables given the
observed variables (aka the posterior) is

p(z|x) = p(x|z)p(z)
p(x)

=
p(x|z)p(z)∫
p(x, z)dz
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Prior:

Says we’re very uncertain about both player’s skill.
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Likelihood:

This is the part of the model that gives meaning to the latent variables.
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Posterior:

The posterior isn’t Gaussian anymore.
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Posterior after A beats B 10 times:

Now the posterior is certain that A is better than B.
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Posterior after both beat each other 10 times:

Now the posterior is certain that neither player is much better than the
other, but is uncertain how good they both are in an absolute sense.
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What is hard to compute about the posterior?

The integral p(x) =
∫
p(x, z)dz is intractable whenever z is high

dimensional. This makes evaluating or sampling from the
normalized posterior p(z|x) for a given x and z also intractable.

Here is a list of operations that are expensive:

▶ Computing a posterior probability: p(z|x) = p(z)p(x|z)
p(x)

▶ Computing the evidence / marginal likelihood p(x) =
∫
p(z, x)dz

▶ Useful for choosing between models, or fitting model parameters.

▶ Computing marginals of
p(z1|x) =

∫
p(z1, z2, . . . zD|x)dz2, dz3, . . . dzD

▶ E.g. finding the posterior over a single tennis player’s skill given all
games.

▶ Sampling z ∼ p(z|x)
▶ Useful for summarizing which hypotheses are likely given the data,

making predictions, and decisions.
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Variational methods

Variational inference is closely related to the calculus of variations,
developed in the 1700s by Euler, Lagrange.

Variational inference is an approximate inference method where we
seek a tractable (e.g., factorized) approximation to the target
intractable distribution.
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Variational methods

To be more formal, variational inference works as follows:

Choose a tractable distribution q(z) ∈ Q from a feasible set Q.
This distribution will be used to approximate p(z|x).

▶ For example, q(z) = N (z|µ,Σ). The idea is that we’ll try choose a Q
that makes q(z) a good approximation of the true posterior p(z|x).

Encode some notion of ”difference” between p(z|x) and q that can
be effciently estimated. Usually we will use the KL divergence.

Minimize this difference. Usually we will use an iterative
optimization method.
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Whatever feasible set we choose for Q, it’s usually not the case
that there is any q ∈ Q that exactly matches the true posterior.

But computing the true posterior is intractable, so we have to take
a shortcut somewhere.
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How to measure closeness: KL divergence

We will measure the difference between q and p using the
Kullback-Leibler divergence

KL(q(z)||p(z|x)) =
∫
q(z) log

q(z)

p(z|x)
dz

= E
z∼q

log
q(z)

p(z|x)

Properties of the KL Divergence

KL(q||p) ≥ 0

KL(q||p) = 0 ⇔ q = p

KL(q||p) ̸= KL(p||q)
KL divergence is not a metric, since it’s not symmetric
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Which direction of KL to use? KL(q||p) vs KL(p||q)

We could minimize KL(q||p) or KL(p||q)
Which one to choose?

As always, we will go with the tractable one.
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Information (I-)Projection:

I-projection: q∗ = argminq∈QKL(q||p) = Ex∼q(x) log
q(x)
p(x) :

p ≈ q =⇒ KL(q||p) small

I-projection underestimates support, and does not yield the
correct moments.

KL(q||p) penalizes q having mass where p has none.

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)
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Moment (M-)projection

M-projection: q∗ = argminq∈QKL(p||q) = Ex∼p(x) log
p(x)
q(x) :

p ≈ q =⇒ KL(p||q) small

KL(p||q) penalizes q missing mass where p has some.

M-projection yields a distribution q(x) with the correct mean and
covariance.

p(x) is mixture of two 2D Gaussians and Q is the set of all 2D
Gaussian distributions (with arbitrary covariance matrices)
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Maximum entropy interpretation

A related quantity is the entropy:

H(p) = −Ex∼p(x) log p(x)

measuring the uncertainty in the distribution p.
Consider the optimization problem

maximize H(p)

subject to Ex∼p(x)[fi(x)] = ti for i = 1, .., k.

Theorem: Exponential family of distributions maximize the
entropy H(p) over all distributions satisfying

Ex∼p(x)[fi(x)] = ti for i = 1, .., k.

In M-projection, if Q is set of exponential families, then the
expected sufficient statistics wrt q∗(x) is the same as that wrt p(x).
M-projection require expectation wrt p, hence intractable.
Most variational inference algorithms make use of the I-projection.
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Mean-field approach

Say we have an arbitrary MRF:

p(x|θ) = exp
{∑

c∈C
ϕc(xc)− logZ(θ)

}

We find an approximate distribution q(x) ∈ Q by performing
I-projection to p(x).

q∗ =argmin
q∈Q

KL(q||p) = Ex∼q(x) log
q(x)

p(x|θ)

argmin
q∈Q

KL(q||p) = Ex∼q(x)

[
log q(x)−

∑
c∈C

ϕc(xc) + logZ(θ)
]

=argmax
q∈Q

∑
c∈C

Eq[ϕc(xc)] +H(q)

For tractability, we need a nice set Q. If p ∈ Q, then q∗ = p. But
this almost never happens.
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Naive Mean-Field

One way to proceed is the mean-field approach where we assume:

q(x) =
∏
i∈V

qi(xi)

the set Q is composed of those distributions that factor out.

Using this in the maximization problem, we can simplify things

q∗ =argmax
q∈Q

∑
c∈C

∑
xc

q(xc)ϕc(xc) +H(q)
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We notice q(xc) =
∏

i∈c qi(xi) and also

H(q) =Eq[− log q(x)] = −
∑
x

q(x) log q(x)

=−
∑
x

q(x)
[∑

i

log qi(xi)
]

=−
∑
i

∑
x

[
qi(xi) log qi(xi)

] q(x)
qi(xi)

=−
∑
i

∑
xi

[
qi(xi) log qi(xi)

]∑
x\xi

q(x)

qi(xi)

=−
∑
i

∑
xi

[
qi(xi) log qi(xi)

]
=
∑
i

H(qi)
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Recall our pairwise MRF

We saw this pairwise 4 cycle in lecture 3

p(x1, x2, x3, x4) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ1,4(x1, x4)

4 3

21

We can write it more generically using our formula for cliques

p(x) ∝
∏
C∈C

ψC(xC)
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Example: Pairwise MRF

Thus the final optimization problem reduces to

q∗ =argmax
q

∑
c∈C

∑
xc

ϕc(xc)
∏
i∈c

qi(xi) +
∑
i

H(qi)

subject to: qi(xi) ≥ 0 and
∑
xi

qi(xi) = 1.

Let’s further simplify the setting and assume that we have a
pairwise MRF. Then the optimization problem becomes

q∗ =argmax
q

∑
(i,j)∈E

∑
xi,xj

ϕij(xi, xj)qi(xi)qj(xj)−
∑
i

∑
xi

qi(xi) log(qi(xi))

subject to: qi(xi) ≥ 0 and
∑
xi

qi(xi) = 1.
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Coordinate maximization

This problem is hard as it has many local maxima! But we can still try
to optimize using block coordinate ascent.

Initialize {qi(xi)}i∈V uniformly

Iterate over i ∈ V
▶ Greedily maximize the objective over qi(xi)
▶ This is equivalent to: qi(xi) ∝ exp

{∑
j∈N(i)

∑
xj
qj(xj)ϕij(xi, xj)

}
▶ which follows from: write the Lagrangian, take the derivative, set to

zero, and solve

▶ Repeat until convergence.

This is guaranteed to converge but can converge to local optima.
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Summary

Approximate the complex (intractable) distribution with a simpler
(tractable) distribution

I-projection & M-projection measure the distance to true posterior

Mean field approximation is a way to simplify the set of
distributions

More variational inference after midterm (which is in 2 weeks).
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