Maximum likelihood estimation of Markov Chains
We use MLE to estimate the transition matrix A from data D = {x(1), ..., x(V)1.
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Log-likelihood of D (all sentences treated as independent)

logp(D|6) = Zlogp ©19) = ZN log m; + ZZNJk logAjr, (1)

j=1k=1
where we define the counts
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To calculate the MLE of A and 7, we need to find parameters 6 = (Aij, ﬁ'j)

: i,j=1
such that logp(D|0) is maximized.

For 7, we only focus on the first term in R.H.S. of (1)
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= arg max Z gjlog m; (define probabilities ¢; =
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= argmax —H(q) — Drr (ql|m)

= argmgn Dk (q||7) =q.

Hence,

and similarly,



Gibbs sampler for Restricted Boltzmann Machines (RBMs)
Model for (X1, ..., Xy, Hy, ..., H;) € {=1,1}**! (c.f. Tutorial 3)

k l
p(xl,...,mk,hl,...,hl) X exp{Zal.’m—i—ZBlhl—i—ZZJ”mth} (2)
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We can easily generate new samples from the learned distribution, as the visible
units are conditionally independent given the hidden units, and vice versa.
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k
p(x|h) = Hp(xilh), p(hlx) = [ p(h;lx)
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Given (2), we can see that
l
p(xi, h) = p(:L’i, hl, hQ, PN hl) X exp{ozi:ci + Zﬂjhj + Z walhj}
J Jj=1
Hence, for any value of z; and h, we have

l
1
p(.Ti,h) = Zexp{aixi + E ,thj + E Jij:z:ihj},
J Jj=1

where the normalizing factor Z does not depend on x;, h. Now, we are ready to
calculate p(z;|h):



) = p(zi=1h)
p(h)
p(z; = 1,h) + p(z; = —1,h)
+ exp{a; + > Bih; + 22:1 Jijh;}
% explai + 30, Bihy + X5y Jighy} + % exp{—ai+ 3, By — Y5y Jijhi)
1
1 + exp{—2(a; + 23:1 Jijhi)}

p(z; =1lh

l
=0(2(cs + Y Jijhy)),
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with o(y) = 1/(1 + eY) called the sigmoid function. We can similarly show

that
k

p(hy =1]x) = o(2(8; + > _ Jijxi))

i=1

Gibbs sampling for the Ising model

The previous example generalizes to any Ising model. So suppose that

p(x) exp{z biz; + Z Jijxix;} for all x € {—1,1}™.

i~j
Fix k € {1,...,m}. The corresponding full conditional is

p(zr = 1|x\1)
plzr =1,%\)
p(zr = —1,x\1) + p(xr = 1,x\1)
E‘XP{Z)’#L‘ bix; + by + Zle Jriz; + ZW]:#M#L‘ Jijrixr;}
CXP{Z;¢1\. bix; — (br + El»vk- Jrix) + lezl:#k_.j#\‘ Jijxix; b+ cxp{z#h bix; + b + 21~k Jrix; + ZL~~/:i¢k,j¢k Jijxix;}
1
1+ exp{—2(bx + Zl/\/k Jriz)}

= o(2(br + Z Jrirr)),
Ik

This suggest that the Gibbs sampler can be trivially implemented for the Ising
model. The adventage of the the previous example is that for bipartite graphs,
we can update the whole group of variables at once.
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