
CSC 412:
Probabilistic Learning and Reasoning

Week 5 : Sampling with Markov Chain Monte Carlo

Denys Linkov

University of Toronto

Prob Learning (UofT) CSC412-Week 5 1 / 51

Overview

We continue with sampling algorithms.

Markov chains

Markov chain Monte Carlo
▶ Metropolis-Hastings
▶ Gibbs sampling
▶ Hamiltonian Monte-Carlo

Announcements:

Assignment 2 is released

Please check your typesetting for A2

Prob Learning (UofT) CSC412-Week 5 2 / 51

Day 2 of your internship, you are back on the lake

Imagine the tasks of drawing random water samples from a lake and
finding the average plankton concentration. Let

p̃(x) = the depth of the lake at x = (x, y)

ϕ(x) = the plankton concentration as a function of x

Z = the volume of the lake =
∫
p̃(x)dx

What did we try last week?

Prob Learning (UofT) CSC412-Week 5 3 / 51

Which problems are we trying to solve?

You can take the boat to any desired location x on the lake, and can
measure the depth, p̃(x), and plankton concentration, ϕ(x), at that
point. Therefore,

Problem 1 is to draw water samples at random such that each
sample is equally likely to come from any point within the lake.

Problem 2 is to find the average plankton concentration.

To correctly estimate Φ, our
method must implicitly discover the
canyons and find their volume
relative to the rest of the lake.

Prob Learning (UofT) CSC412-Week 5 4 / 51

Using another distribution - Rejection sampling

We want expectations under p(x) = p̃(x)/Zp which is a very
complicated one-dimensional density.

Assume that we have a simpler proposal density q(x) which we
can evaluate (within a multiplicative factor Zq, as before), and
from which we can generate samples, i.e. q̃(x) = Zq · q(x).
Further assume that we know the value of a constant c such that

cq̃(x) > p̃(x) ∀x

Prob Learning (UofT) CSC412-Week 5 5 / 51

Using another distribution - Rejection sampling

You call your friend who is near a puddle and use its depth q(x) to
help run rejection sampling.

If the random number between 0 and c ∗ q(x) is less than p̃(x), we
accept

If not ... we pour the water back into the lake

Prob Learning (UofT) CSC412-Week 5 6 / 51

What if we see a bunch of plankton?

We can use previous concentrations to better understand where we
can find more plankton

Maybe we should add some sequential dependency?

Prob Learning (UofT) CSC412-Week 5 7 / 51

Sequential data

We considered methods in which the generated samples are i.i.d:

We generated T samples

x1:T = {x1, ..., xT }.

But each sample was independent from each other

xt ∼ p(x) i.i.d.

This lecture, we will generate samples that are dependent.

Prob Learning (UofT) CSC412-Week 5 8 / 51

Sequential data

This also comes up when modelling the data. We generally assume
data was i.i.d, however this may be a poor assumption:

Sequential data are common:
▶ time-series modelling (e.g. stock prices, speech, video analysis)
▶ ordered data (e.g. textual data, gene sequences)

Recall the general joint factorization via the chain rule

p(x1:T) =

T∏
t=1

p(xt|xt−1, ..., x1) where p(x1|x0) = p(x1).

This quickly becomes intractable for high-dimensional data. Each
factor requires exponentially many parameters to specify.

Prob Learning (UofT) CSC412-Week 5 9 / 51

Markov chains

We make the simplifying first-order Markov chain assumption:

p(xt|x1:t−1) = p(xt|xt−1)

This assumption greatly simplifies the factors in the joint
distribution

p(x1:T) =

T∏
t=1

p(xt|xt−1)

Prob Learning (UofT) CSC412-Week 5 10 / 51

Stationary Markov chains

Further assumptions may be useful:

Stationary (homogeneous) Markov chain: the distribution
generating the data does not change through time

p(xt+1 = y|xt = x) = p(xt+2 = y|xt+1 = x) for all t.

Non-stationary Markov chain: the transition probabilities
p(xt+1 = y|xt = x) depend on the time t.

Here we only consider stationary Markov chains.

Prob Learning (UofT) CSC412-Week 5 11 / 51

Higher-order Markov chains

In some cases, the first-order assumption may be restrictive (such as
when modeling natural language, where long-term dependencies occur
often). We can generalize to high-order dependence trivially

Second order:

p(xt|x1:t−1) = p(xt|xt−1, xt−2)

m-th-order

p(xt|x1:t−1) = p(xt|xt−1:t−m)

Prob Learning (UofT) CSC412-Week 5 12 / 51

Transition matrix

When xt is discrete (e.g. xt ∈ {1, ...,K}), the conditional
distribution p(xt|xt−1) can be written as a K ×K matrix.

We call this the transition (or stochastic) matrix A:

Aij = p(xt = j|xt−1 = i), A ∈ RK×K .

Note that

p(xt = j) =
∑
i

p(xt = j|xt−1 = i)p(xt−1 = i),

=
∑
i

Aijp(xt−1 = i).

Each row of the matrix sums to one,
∑

j Aij = 1.

Prob Learning (UofT) CSC412-Week 5 13 / 51

State transition diagram

The transition matrix A: Aij = p(xt = j|xt−1 = i) is the
probability of going from state i to state j.

▶ We can visualize Markov chains via a directed
graph, where nodes represent states and
arrows represent legal transitions, i.e.,
non-zero elements of A.

This is a state transition diagram.

The weights associated with the arcs are the probabilities.

The transition matrix for the 2-state chain shown above is given by

A =

[
1− α α
β 1− β

]

Prob Learning (UofT) CSC412-Week 5 14 / 51

Chapman-Kolmogorov equations

The n-step transition matrix A(n) is defined as

Aij(n) = p(xt+n = j|xt = i)

which is the probability of getting from i to j in exactly n steps.

Notice that A(1) = A.

Chapman-Kolmogorov equations state that

Aij(m+n) =

K∑
k=1

Aik(m)Akj(n) equivalently A(m+n) = A(m)A(n)

the probability of getting from i to j in m+ n steps is just the
probability of getting from i to k in m steps, and then from k to j
in n steps, summed up over all k.

So A(n) = A×A(n− 1) = A×A×A(n− 2) = · · · = An.

Prob Learning (UofT) CSC412-Week 5 15 / 51

Application: Markov Language Models

We could use Markov chains as language models, which are
distributions over sequences of words.

State space is all words and xt denotes the t-th word in a sentence.

We may use a first-order Markov model.
▶ To estimate A and π, note that the probability of

any particular sentence of length T is:

p(x1:T |θ) =π(x1)A(x1, x2) · · ·A(xT−1, xT)

=

K∏
j=1

π
1[x1=j]
j

T∏
t=2

K∏
j=1

K∏
k=1

A
1[xt=k,xt−1=j]
jk

where π(x1) is the probability of the sentence
starting with word x1.

The estimating equations have a natural form.

Prob Learning (UofT) CSC412-Week 5 16 / 51

Application: Markov Language Models

We use MLE to estimate A from data D = {x(1), ..., x(N)}.
Likelihood of any particular sentence x(i) of length Ti

p(x(i)|θ) =
K∏
j=1

π
1[x

(i)
1 =j]

j

Ti∏
t=2

K∏
j=1

K∏
k=1

A
1[x

(i)
t =k,x

(i)
t−1=j]

jk

Log-likelihood of D (all sentences treated as independent)

log p(D|θ) =
N∑
i=1

log p(x(i)|θ) =
∑
j

N1
j log πj +

∑
j

∑
k

Njk logAjk

where we define the counts

N1
j =

N∑
i=1

1[x
(i)
1 = j], Njk =

N∑
i=1

Ti−1∑
t=1

1[x
(i)
t = j, x

(i)
t+1 = k].

The MLE is given as π̂j =
N1

j∑
j N

1
j

Âjk =
Njk∑
k Njk

.

Prob Learning (UofT) CSC412-Week 5 17 / 51

Stationary distribution of a Markov chain

We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

Let A be the transition matrix, e.g. p(xt+1 = j|xt = i) = Aij and
πt(j) = p(xt = j) be the probability of being in state j at time t.

The initial distribution is given by π0 ∈ RK and

π1(j) =

K∑
i=1

p(x1 = j|x0 = i)π0(i) =

K∑
i=1

Aijπ0(i) =

K∑
i=1

(A⊤)jiπ0(i).

Using the vector notation π1 = A⊤π0 and more generally

πt = A⊤πt−1 = A⊤A⊤πt−2 = · · · = (A⊤)tπ0.

Do this infinitely many steps, the distribution of xt may converge

π = A⊤π.

then we have reached the stationary distribution (aka the invariant
distribution) of the Markov chain.

Prob Learning (UofT) CSC412-Week 5 18 / 51

Stationary distribution

A bit of linear algebra:

We can find the stationary distribution of a Markov chain by
solving the eigenvector equation

A⊤v = v and set π = v.

v is the eigenvector of A⊤ with eigenvalue 1.

Need to normalize!

Since A1 = 1 (row sums are 1), 1 is an eigenvalue of A with
eigenvector 1. A and A⊤ have the same eigenvalues. It follows
that 1 is also the eigenvalue of A⊤.

The stationary distribution may not be unique.

Prob Learning (UofT) CSC412-Week 5 19 / 51

Example: Stationary distribution

Assume you are trying to figure out where your friend will be at a
given point in time. They never respond to messages.

You know their transition matrix and it’s defined as

A1 is the library

A2 is home

A3 is the blue food truck

A =

1
4

3
4 0

1
4 0 3

4
0 1

4
3
4


You want to make the best guess where they will be.

Prob Learning (UofT) CSC412-Week 5 20 / 51

Equations and Normalizing Condition

Since we are looking for the eigan vector for λ = 1, we will look for
π = πA We need to solve π = πA:

π1 =
1

4
π1 +

1

4
π2

π2 =
3

4
π1 +

1

4
π3

π3 =
3

4
π2 +

3

4
π3

Normalizing condition:

π1 + π2 + π3 = 1

Prob Learning (UofT) CSC412-Week 5 21 / 51

Solving for π2 and π3 in terms of π1

From the first equation:

3

4
π1 =

1

4
π2 =⇒ π2 = 3π1

From the third equation:

1

4
π3 =

3

4
π2 =⇒ π3 = 3π2

Substituting π2 = 3π1, we get π3 = 9π1.
Now we substitute to find the normalizing condition.

π1 + 3π1 + 9π1 = 1

13π1 = 1 =⇒ π1 =
1

13

Prob Learning (UofT) CSC412-Week 5 22 / 51

The Stationary Distribution

Now we can find π2 and π3:

π2 = 3π1 =
3

13

π3 = 9π1 =
9

13

Therefore, the stationary distribution is:

π =

(
1

13
,
3

13
,
9

13

)

Prob Learning (UofT) CSC412-Week 5 23 / 51

Detailed balance equations

Markov Chain is called:

irreducible if we can get from any state to any other state.

regular if An has positive entries for some n.

time reversible if there exists a distribution π such that

πiAij = πjAji for all i, j.

This is called the detailed balance equations.

Prob Learning (UofT) CSC412-Week 5 24 / 51

Detailed balance equations

Detailed balance equations (DB): πiAij = πjAji for all i, j.

Theorem

If a Markov chain with transition matrix A satisfies detailed balance
wrt distribution π, then π is a stationary distribution.

Proof: Show that A⊤π = π or, in other words, that

K∑
i=1

πiAij = πj for all j.

Indeed, for every j = 1, . . . ,K, we have

K∑
i=1

πiAij
(DB)
=

K∑
i=1

πjAji = πj

K∑
i=1

Aji = πj .

Prob Learning (UofT) CSC412-Week 5 25 / 51

Metropolis Algorithm (first encounter with MCMC)

Now that you know about markov chains, can we do a random
walk on our p(x) to sample effectively?

We can just move around using information from p(x) and random
sampling.

Do we even need our friend at the puddle q(x)?

Yes, just ask them to be a random number generator.

Prob Learning (UofT) CSC412-Week 5 26 / 51

Markov Chain Monte Carlo (MCMC)
In contrast to rejection sampling, where the
accepted points {x(t)} are independent, MCMC
methods generate a dependent sequence.

Each sample x(t) has a probability distribution
that depends on the previous value, x(t−1).

MCMC methods need to be run for a time in
order to generate samples that are from the
target distribution p.

We can still do Monte Carlo estimaton for large enough T to estimate
the mean of a test function ϕ:

Ex∼p[f(x)] ≈
1

T

T∑
t=1

f(x(t)).

(good idea to discard a bunch of initial samples)

Prob Learning (UofT) CSC412-Week 5 27 / 51

Metropolis (first encounter with MCMC)

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(x). In high dimensions, it is hard to find one such q.

The Metropolis algorithm instead
uses our target density p which
depends on the current state x(t).

We then sample a new state
uniformly (symetrically), based on
the interval [x(t−1) − s, x(t−1) + s]

We then compare p̃(x′) and p̃(x(t))

We accept the new state with probability of

A(x′|x(t)) = min

{
1,

p̃(x′)

p̃(x(t))

}

Prob Learning (UofT) CSC412-Week 5 28 / 51

Example of Metropolis

Figure: Random walk on Normal distribution (Wikipedia)

Intuition: if we are going into are lower probability area, we should be
accept with a lower probability

Prob Learning (UofT) CSC412-Week 5 29 / 51

Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(x). In high dimensions, it is hard to find one such q.

The Metropolis-Hastings algorithm
instead uses a proposal density q
which depends on the current state
x(t).

The density q(x|x(t)) might be a
simple distribution such as a
Gaussian centered on the current
x(t), but can be any density from
which we can draw samples.

In contrast to importance and
rejection sampling, it is not
necessary that q(x|x(t)) looks
similar to p(x).

Prob Learning (UofT) CSC412-Week 5 30 / 51

Metropolis-Hastings algorithm

As before, assume we can evaluate p̃(x) for any x. Our procedure:

A tentative new state x′ is generated from the proposal density
q(x′|x(t)). We accept the new state with probability

A(x′|x(t)) = min

{
1,

p̃(x′)q(x(t)|x′)
p̃(x(t))q(x′|x(t))

}

▶ If accepted, set x(t+1) = x′. Otherwise, set x(t+1) = x(t).

Metropolis: Simpler version when q(x′|x) = q(x|x′) for all x, x′.

Theorem: This procedure defines a Markov chain with stationary
distribution π(x) equal to the target distribution p(x).

Prob Learning (UofT) CSC412-Week 5 31 / 51

Proof of the theorem

Recall A(x′|x) = min
{
1, p̃(x

′)q(x|x′)
p̃(x)q(x′|x)

}
= min

{
1, p(x

′)q(x|x′)
p(x)q(x′|x)

}
.

The resulting Markov chain has the following transition probabilities:

r(x′|x) =

{
q(x′|x)A(x′|x) if x′ ̸= x

q(x|x) +
∑

x′ ̸=x q(x
′|x)(1−A(x′|x)) if x′ = x

.

Show (DB) r(x′|x)p(x) = r(x|x′)p(x′). If x ̸= x′

r(x′|x)p(x) = p(x)q(x′|x)min

{
1,

p(x′)q(x|x′)

p(x)q(x′|x)

}
= min

{
p(x′)q(x|x′), p(x)q(x′|x)

}

r(x|x′)p(x′) = p(x′)q(x|x′)min

{
1,

p(x)q(x′|x)
p(x′)q(x|x′)

}
= min

{
p(x′)q(x|x′), p(x)q(x′|x)

}
Thus p is a stationary distribution of this Markov chain.

Prob Learning (UofT) CSC412-Week 5 32 / 51

Overview for the remaining hour

Gibbs sampling

Hamiltonian Monte Carlo

MCMC diagnostics

Prob Learning (UofT) CSC412-Week 5 33 / 51

Gibbs Sampling Procedure

Suppose the vector x has been divided into d components

x = (x1, ..., xd).

Start with any x(0) = (x
(0)
1 , . . . , x

(0)
d). In the t-th iteration:

For j = 1, . . . , d:

▶ Sample x
(t)
j from the conditional distribution given other

components:

x
(t)
j ∼ p(xj |x(t−1)

−j)

Where x
(t−1)
−j represents all the components of x except for xj at

their current values:

x
(t−1)
−j = (x

(t)
1 , x

(t)
2 , ..., x

(t)
j−1, x

(t−1)
j+1 , ..., x

(t−1)
d)

No accept/reject, only accept.

Prob Learning (UofT) CSC412-Week 5 34 / 51

Example: Bivariate Gaussian

Consider a (simple) problem of sampling from the bivariate Gaussian

X =

[
X1

X2

]
∼ N2(µ,Σ), µ =

[
µ1

µ2

]
, Σ =

[
1 ρ
ρ 1

]
.

We have
X1|X2 = x2 ∼ N(µ1 + ρ(x2 − µ2), 1− ρ2)

X2|X1 = x1 ∼ N(µ2 + ρ(x1 − µ1), 1− ρ2)

Given X(0) = (0, 0) we proceed iteratively for t ≥ 1:

X
(t)
1 ∼ N(µ1 + ρ(x

(t−1)
2 − µ2), 1− ρ2)

X
(t)
2 ∼ N(µ2 + ρ(x

(t)
1 − µ1), 1− ρ2)

Prob Learning (UofT) CSC412-Week 5 35 / 51

Sampling Job Offer Happiness with Gibbs

You want to sample how happy you’ll be different job offers, assume
your happiness is given by the function p(h, i, s,m, c, w) where

h is happiness

i is your interest in the work

s is income

m is morality

c is coworkers

w is hours worked.

Now we initialize our initial values.

[h, i, s,m, c, w] = [0, 0, 0, 0, 0, 0]

And iterate by sampling from some conditional distribution pc

h1 ∼ pc(h0, i0, s0,m0, c0, w0)

Prob Learning (UofT) CSC412-Week 5 36 / 51

Sampling Job Offer Happiness with Gibbs

And iterate by sampling from some condition distribution pc

h1 ∼ pc(h0, i0, s0,m0, c0, w0)

i1 ∼ pc(h1, i0, s0,m0, c0, w0)

s1 ∼ pc(h1, i1, s0,m0, c0, w0)

m1 ∼ pc(h1, i1, s1,m0, c0, w0)

c1 ∼ pc(h1, i1, s1,m1, c0, w0)

w1 ∼ pc(h1, i1, s1,m1, c1, w0)

Is this the best way to sample for this type of problem?
Probably not, conditional probability isn’t easier to sample from,
random walk might not be intuitive approach.

Prob Learning (UofT) CSC412-Week 5 37 / 51

Example: Bivariate Gaussian

1

(The real power of Gibbs approach comes in situations when the
distribution is hard but full-conditionals are simple, e.g. Ising)

1From ”Bayesian Data Analysis Third edition” by Gelman, Carlin, Stern,
Dunson, Vehtari, Rubin

Prob Learning (UofT) CSC412-Week 5 38 / 51

Hamiltonian Monte Carlo

This is essentially a Metropolis-Hastings algorithm with a
specialized proposal mechanism.

Algorithm uses a physical analogy to make proposals.

Given the position x, the potential energy is E(x)

Construct a distribution

p(x) ∝ e−E(x), with E(x) = − log(p̃(x))

where p̃(x) is the unnormalized density we can evaluate.

Prob Learning (UofT) CSC412-Week 5 39 / 51

Hamiltonian Monte Carlo

Introduce momentum v carrying the kinetic energy

K(v) = 1
2∥v∥

2 = 1
2v

⊤v.

Total energy or Hamiltonian:

H(x, v) = E(x) +K(v).

Energy is preserved:
▶ Frictionless ball rolling (x, v) → (x′, v′)
▶ H(x, v) = H(x′, v′).

Ideal Hamiltonian dynamics are reversible: reverse v and the ball
will return to its start point! (x′,−v′) → (x,−v)

Prob Learning (UofT) CSC412-Week 5 40 / 51

Hamiltonian Monte Carlo

The joint distribution:
▶ p(x, v) ∝ e−E(x)e−K(v) = e−E(x)−K(v) = e−H(x,v)

▶ Momentum is Gaussian, and independent of the position.

MCMC procedure
▶ Sample the momentum from the standard Gaussian.
▶ Simulate Hamiltonian dynamics, flip sign of the momentum

▶ Hamiltonian dynamics is reversible.
▶ Energy is constant p(x, v) = p(x′, v′) = p(x′,−v′).

How to simulate Hamiltonian dynamics? Take:

dx

dt
=
∂H

∂v
=

∂K

∂v
dv

dt
=− ∂H

∂x
= −∂E

∂x

(Indeed: dH
dt =

∑
i
∂E
∂xi

dxi
dt +

∑
i
∂H
∂vi

dvi
dt will be zero)

Prob Learning (UofT) CSC412-Week 5 41 / 51

Leap-frog integrator

A numerical approximation:

v(t+ ϵ
2) =v(t) +

ϵ

2

dv

dt
(t) = v(t)− ϵ

2

∂E

∂x
(x(t))

x(t+ ϵ) =x(t) + ϵ
dx

dt
(t) = x(t) + ϵ

∂K

∂v
(v(t+ ϵ

2))

v(t+ ϵ) =v(t+ ϵ
2)−

ϵ

2

∂E

∂x
(x(t+ ϵ))

(Slightly more accurate than the standard Euler’s method)

We do a fixed number of leap-frog steps.

Dynamics are still deterministic (and reversible)

Prob Learning (UofT) CSC412-Week 5 42 / 51

HMC algorithm

The HMC algorithm (run until it mixes):

Current position: (x(t−1), v(t−1)))

Sample momentum: v(t) ∼ N (0, I).

Start at (x, v) = (x(t−1), v(t)) and run Leapfrog integrator for L
steps and reach (x′, v′)

Accept new state (x′,−v′) with probability:

min

{
1,

exp(H(x(t−1), v(t−1)))

exp(H(x′, v′))

}

Low energy points are favored.

Prob Learning (UofT) CSC412-Week 5 43 / 51

MCMC Inference

Sample from unnormalized posterior.

Estimate statistics from simulated values of x:
▶ mean
▶ median
▶ quantiles

Posterior predictive distribution of unobserved outcomes can
be obtained by further simulation conditional on drawn values of x.

All of this however requires some care, as MCMC is not without
problems.

Prob Learning (UofT) CSC412-Week 5 44 / 51

MCMC diagnostics

How do we know we have ran the algorithm long enough?

What if we started very far from where our distribution is?

Since there is correlation between each item of the chain
(autocorrelation), what is the ”effective” number of samples?

Prob Learning (UofT) CSC412-Week 5 45 / 51

Good Ideas for MCMC

Some obvious things to consider:

Parallel computation is cheap - we can run multiple chains in
parallel starting at different points

We should discard some initial samples - burn-in phase.

We should examine how well the chain is ”mixed”.

(No need to memorize any of the formulas below)

Prob Learning (UofT) CSC412-Week 5 46 / 51

R hat

Start with m chains each of length n, (xij)ij ∈ Rn×m.
▶ this will be already after a fixed burn-in phase.

The between sequence variance B is:

B =
n

m− 1

m∑
j=1

(x̄.j − x̄..)
2,

where:

x̄.j =
1

n

n∑
i=1

xij and x̄.. =
1

m

m∑
j=1

x̄.j =
1

mn

n∑
i=1

m∑
j=1

xij

(individual chain means, total mean)

Prob Learning (UofT) CSC412-Week 5 47 / 51

R hat

The within sequence variance W is:

W =
1

m

m∑
j=1

s2j

where:

s2j =
1

n− 1

n∑
i=1

(xij − x̄.j)
2

Idea: If one or more chain has not mixed well, the variance of all
the chains combined together should be higher than that of
individual chains.

Prob Learning (UofT) CSC412-Week 5 48 / 51

R hat

Next we compute the average variance:

v̂ar+(x) =
n− 1

n
W +

1

n
B

Finally define R-hat coefficient:

R̂ =

√
v̂ar+(x)

W

If chains have not mixed well, R-hat is larger than 1.

Split-R̂: Split each chain into the first and second halves. This
can detect non-stationarity within a single chain.

Prob Learning (UofT) CSC412-Week 5 49 / 51

Effective Sample Size

If x1, . . . , xn are i.i.d. with variance σ2 then var(x̄n) =
σ2

n .

In general, without assuming independence

var(x̄) = 1
n2

n∑
i=1

n∑
j=1

cov(xi, xj) =
σ2

n2

n∑
i=1

n∑
j=1

corr(xi, xj)

so n2∑n
i=1

∑n
j=1 corr(xi,xj)

measures “effective sample size”.

Similarly, we define the effective sample size to be:

neff =
mn

1 + 2
∑∞

t=1 ρt

where ρt = corr(x0, xt) are unknown, so we also estimate them.

Prob Learning (UofT) CSC412-Week 5 50 / 51

Diagnostics Summary

Once R̂ is near 1, and n̂eff is more than 10 per chain for all scalar
estimands we collect the mn simulations, (excluding the burn-in).

We can then draw inference based on our samples. However:
▶ Even if the iterative simulations appear to have converged, passed

all tests etc. It may still be far from convergence!

When we declare ”convergence” - we mean that all chains appear
stationary and well mixed.

Next week: HMMs and Variational Inference

Prob Learning (UofT) CSC412-Week 5 51 / 51

