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Overview

Message passing

Monte Carlo sampling

Trueskill latent variable model
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Variable Elimination Order and Trees

Last week: we can do exact inference by variable elimination: I.e.
to compute p(A|C), we can marginalize p(A,B|C) over every
variable in B, one at a time.

Computational cost is determined by the graph structure, and the
elimination ordering.

Determining the optimal elimination ordering is hard.

Even if we do, the resulting marginalization might also be
unreasonably costly.

Fortunately, for trees, any elimination ordering that goes from the
leaves inwards towards any root will be optimal.

You can think of trees as just chains which sometimes branch.
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Inference in Trees (MRF with no cycles)

A graph is G = (V, E) where V is
the set of vertices (nodes) and E the
set of edges

For i, j ∈ V, we have (i, j) ∈ E if
there is an edge between the nodes
i and j.

For a node in graph i ∈ V, N(i)
denotes the neighbors of i, i.e.
N(i) = {j : (i, j) ∈ E}.
Shaded nodes are observed, and
denoted by x̄2, x̄4, x̄5.

The joint distribution in the general case is

p(x1:n) =
1

Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

ψij(xi, xj).
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Inference in Trees

Joint distribution is

p(x1:n) =
1

Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

ψij(xi, xj).

Want to compute p(x3|x̄2, x̄4, x̄5).
We have

p(x3|x̄2, x̄4, x̄5) ∝ p(x3, x̄2, x̄4, x̄5).

Let’s write the variable elimination algorithm.
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Simplifying inference on Trees

How can we simplify relationships of a Tree Graph?

Idea: Try to write probabilities as functions of the edges
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Inference in Trees

Slide credit: S. Ermon
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Message Passing on Trees

We perform variable elimination from leaves to root, which is the sum
product algorithm to compute all marginals. Belief propagation is a
message-passing between neighboring vertices of the graph.

The message sent from variable j to i ∈ N(j) is

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)/i

mk→j(xj)

▶ If xj is observed, the message is

mj→i(xi) = ψj(x̄j)ψij(xi, x̄j)
∏

k∈N(j)/i

mk→j(x̄j)

Once the message passing stage is complete, we can compute our
beliefs as

b(xi) ∝ ψi(xi)
∏

j∈N(i)

mj→i(xi).

Once normalized, beliefs are the marginals we want to compute!
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Message Passing on Trees

The message sent from variable j to i ∈ N(j) is

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)/i

mk→j(xj)

Each message mj→i(xi) is a vector with one value for each state of xi.
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Inference in Trees: Compute p(x3|x̄2, x̄4, x̄5)

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)/i

mk→j(xj)

b(xi) ∝ψi(xi)
∏

j∈N(i)

mj→i(xi).

m5→3(x3) = ψ5(x̄5)ψ35(x3, x̄5)

m2→1(x1) = ψ2(x̄2)ψ12(x1, x̄2)

m4→3(x3) = ψ4(x̄4)ψ34(x3, x̄4)

m1→3(x3) =
∑

x1
ψ1(x1)ψ13(x1, x3)m2→1(x1)

b(x3) ∝ ψ3(x3)m1→3(x3)m4→3(x3)m5→3(x3)

This is the same as variable elimination, so

p(x3|x̄2, x̄4, x̄5) = b(x3)
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How do we update the state of all nodes?

We did leaf − > parent

Now we can do ...
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Belief Propagation on Trees

Belief Propagation Algorithm on Trees

Choose root r arbitrarily

Pass messages from leafs to r

Pass messages from r to leafs

These two passes are sufficient on trees!

Compute beliefs (marginals)

b(xi) ∝ ψi(xi)
∏

j∈N (i)

mj→i(xi), ∀i

One can compute them in two steps:

Compute unnormalized beliefs b̃(xi) ∝ ψi(xi)
∏

j∈N (i)mj→i(xi)

Normalize them b(xi) = b̃(xi)/
∑

xi
b̃(xi).

Prob Learning (UofT) CSC412-Week 4 12 / 43



Loopy Belief Propagation

Example we covered is a simple case, proof link here
https://stanford.edu/~montanar/TEACHING/Stat375/

handouts/bp_book.pdf

What if the graph (MRF) we have is not a tree and have cycles?

Keep passing messages until convergence.

This is called Loopy Belief Propagation.

This is like when someone starts a rumour and then hears the same
rumour from someone else, making them more certain it’s true.

We won’t get the exact marginals, but an approximation.

But turns out it is still very useful!
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Loopy Belief Propagation

Loopy BP:

Initialize all messages uniformly:

mi→j(xj) = [1/k, ..., 1/k]⊤

where k is the number of states xj can take.
Keep running BP updates until it “converges”:

mj→i(xi) =
∑
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)/i

mk→j(xj)

and (sometimes) normalized for stability.
It will generally not converge, but that’s generally ok.
Compute beliefs

b(xi) ∝ ψi(xi)
∏

j∈N (i)

mj→i(xi).

This algorithm is still very useful in practice, without any theoretical
guarantee (other than trees).
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Sum-product vs. Max-product

The algorithm we learned is called sum-product BP and
approximately computes the marginals at each node.

For MAP inference, we maximize over xj instead of summing over
them. This is called max-product BP.

BP updates take the form

mj→i(xi) = max
xj

ψj(xj)ψij(xi, xj)
∏

k∈N(j)̸=i

mk→j(xj)

After BP algorithm converges, the beliefs are max-marginals

b(xi) ∝ ψi(xi)
∏

j∈N (i)

mj→i(xi).

MAP inference:
x̂i = argmax

xi

b(xi).
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Summary

This algorithm is still very useful in practice, without much
theoretical guarantee (other than trees).

Loopy BP multiplies the same potentials multiple times. It is
often over-confident.

Loopy BP can oscillate, but this is generally ok.

Loopy BP often works better if we normalize messages, and use
momentum in the updates.

The algorithm we learned is called sum-product BP. If we are
interested in MAP inference, we can maximize over xj instead of
summing over them. This is called max-product BP.
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Monte Carlo: Overview

Ancestral Sampling

Simple Monte Carlo

Importance Sampling

Rejection Sampling
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Sampling

A sample from a distribution p(x) is a single realization x whose
probability distribution is p(x). Here, x can be high-dimensional
or simply real valued.

We assume the density from which we wish to draw samples, p(x),
can be evaluated to within a multiplicative constant. That is, we
can evaluate a function p̃(x) such that

p(x) =
p̃(x)

Z
.
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Warm up: Ancestral Sampling

Given a DAGM, and the ability to sample from each of its factors
given its parents, we can sample from the joint distribution over
all the nodes by ancestral sampling, which simply means
sampling in a topoplogical order.

At each step, sample from any conditional distribution that you
haven’t visited yet, whose parents have all been sampled.
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Ancestral Sampling Example

The graph factorizes according to the
local conditional probabilities

p(x1,...,N ) =

N∏
i

p(xi|parents(xi))

=p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3)

Start by sampling from p(x1).

Then sample from p(x2|x1) and p(x3|x1).
Then sample from p(x4|x2, x3).
Finally, sample from p(x5|x3).
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Ancestral Sampling Calculations

Sample Difficulty (d) Intelligence (i) Grade (g) SAT (s) Letter (l)

1 d0 i1 g1 s1 l1

2 d1 i0 g3 s1 l0

3 d0 i1 g1 s1 l0

4 d1 i0 g3 s1 l0

5 d0 i1 g1 s1 l0

Figure: Sampling from our graph (From CSC228)
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Example: Drawing sample from a lake

Imagine the tasks of drawing random water samples from a lake and
finding the average plankton concentration. Let

p̃(x) = the depth of the lake at x = (x, y)

ϕ(x) = the plankton concentration as a function of x

Z = the volume of the lake =
∫
p̃(x)dx

How would you do this?
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Main objectives of sampling

We will be using Monte Carlo methods to solve one or both of the
following problems.

Problem 1: To generate samples {x(r)}Rr=1 from a given
probability distribution p(x).

Problem 2: To estimate expectations of functions, ϕ(x), under
this distribution p(x)

Φ = E
x∼p(x)

[ϕ(x)] =

∫
ϕ(x)p(x)dx

ϕ is called a test function.
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Example

Examples of test functions ϕ(x):

the mean of a function f under p(x) by finding the expectation of
the function ϕ1(x) = f(x).

the variance of f under p(x) by finding the expectations of the
functions ϕ1(x) = f(x) and ϕ2(x) = f(x)2

ϕ1(x) = f(x) ⇒ Φ1 = E
x∼p(x)

[ϕ1(x)]

ϕ2(x) = f(x)2 ⇒ Φ2 = E
x∼p(x)

[ϕ2(x)]

⇒ var(f(x)) = Φ2 − (Φ1)
2
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Estimation problem

We start with the estimation problem using simple Monte Carlo:

Simple Monte Carlo: Given {x(r)}Rr=1 ∼ p(x) we can estimate
the expectation E

x∼p(x)
[ϕ(x)] using the estimator Φ̂:

Φ := E
x∼p(x)

[ϕ(x)] ≈ 1

R

R∑
r=1

ϕ(x(r)) := Φ̂

The fact that Φ̂ is a consistent estimator of Φ follows from the
Law of Large Numbers (LLN).
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Basic properties of Monte Carlo estimation

Unbiasedness: If the vectors {x(r)}Rr=1 are generated
independently from p(x), then the expectation of Φ̂ is Φ.

E[Φ̂] =E
[
1

R

R∑
r=1

ϕ(x(r))

]
=

1

R

R∑
r=1

E
[
ϕ(x(r))

]
=

1

R

R∑
r=1

E
x∼p(x)

[
ϕ(x)

]
=
R

R
E

x∼p(x)

[
ϕ(x)

]
=Φ
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Simple properties of Monte Carlo estimation

Variance: As the number of samples of R increases, the variance
of Φ̂ will decrease with rate 1

R

var[Φ̂] =var

[
1

R

R∑
r=1

ϕ(x(r))

]

=
1

R2
var

[ R∑
r=1

ϕ(x(r))

]

=
1

R2

R∑
r=1

var

[
ϕ(x(r))

]
=
R

R2
var[ϕ(x)]

=
1

R
var[ϕ(x)]

Accuracy of the Monte Carlo estimate depends on the variance of ϕ.
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Normalizing constant

Assume we know the density p(x) up to a multiplicative constant

p(x) =
p̃(x)

Z

There are two difficulties:
▶ We do not generally know the normalizing constant, Z. The main

diffuculty is computing it

Z =

∫
p̃(x)dx

which requires computing a high-dimensional integral.
▶ Even if we did know Z, the problem of drawing samples from p(x)

is still a challenging one, especially in high-dimensional spaces.
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Bad Idea: Lattice Discretization

Imagine that we wish to draw samples from the density p(x) = p̃(x)
Z

given in figure (a).

How to compute Z?
We could discretize the variable x and sample from the discrete
distribution (figure (b)).
In figure (b) there are 50 uniformly spaced points in one
dimension. If our system had, D = 1000 dimensions say, then the
corresponding number of points would be 50D = 501000. Thus, the
cost is exponential in dimension!
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An analogy

Imagine the tasks of drawing random water samples from a lake and
finding the average plankton concentration. Let

p̃(x) = the depth of the lake at x = (x, y)
ϕ(x) = the plankton concentration as a function of x
Z = the volume of the lake =

∫
p̃(x)dx

The average concentration of plankton is therefore

Φ =
1

Z

∫
ϕ(x)p̃(x)dx.
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An analogy

You can take the boat to any desired location x on the lake, and can
measure the depth, p̃(x), and plankton concentration, ϕ(x), at that
point. Therefore,

Problem 1 is to draw water samples at random such that each
sample is equally likely to come from any point within the lake.

Problem 2 is to find the average plankton concentration.

To correctly estimate Φ, our
method must implicitly discover the
canyons and find their volume
relative to the rest of the lake.
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Estimation tool: Importance Sampling

Importance sampling is a method for estimating the expectation of
a function ϕ(x).

The density from which we wish to
draw samples, p(x), can be
evaluated up to normalizing
constant, p̃(x)

p(x) =
p̃(x)

Zp

There is a simpler density, q(x)
from which it is easy to sample
from and easy to evaluate up to
normalizing constant (i.e. q̃(x))

q(x) =
q̃(x)

Zq
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Estimation tool: Importance Sampling

In importance sampling, we generate R samples from q(x)

{x(r)}Rr=1 ∼ q(x)

If these points were samples from p(x) then we could estimate Φ by

Φ = E
x∼p(x)

[ϕ(x)] ≈ 1

R

R∑
r=1

ϕ(x(r)) = Φ̂

That is, we could use a simple Monte Carlo estimator.

But we sampled from q. We need to correct this!

Values of x where q(x) is greater than p(x) will be
over-represented in this estimator, and points where q(x) is less
than p(x) will be under-represented. Thus, we introduce weights.
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Introduce weights: w̃r =
p̃(x(r))

q̃(x(r))
and notice that

1

R

R∑
r=1

w̃r ≈ E
x∼q(x)

[ p̃(x)
q̃(x)

]
=

∫
p̃(x)

q̃(x)
q(x)dx =

Zp

Zq

Finally, we rewrite our estimator under q

Φ =

∫
ϕ(x)p(x)dx =

∫
ϕ(x)·p(x)

q(x)
·q(x)dx ≈ 1

R

R∑
r=1

ϕ(x(r))
p(x(r))

q(x(r))
= (∗)

However, the estimator relies on p. It can only rely on p̃ and q̃.

(∗) = Zq

Zp

1

R

R∑
r=1

ϕ(x(r)) · p̃(x
(r))

q̃(x(r))
=
Zq

Zp

1

R

R∑
r=1

ϕ(x(r)) · w̃r

≈
1
R

∑R
r=1 ϕ(x

(r)) · w̃r

1
R

∑R
r=1 w̃r

=

R∑
r=1

ϕ(x(r)) · wr = Φ̂iw

where wr =
w̃r∑R
r=1 w̃r

and Φ̂iw is our importance weighted estimator.
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Sampling tool: Rejection sampling

We want expectations under p(x) = p̃(x)/Zp which is a very
complicated one-dimensional density.

Assume that we have a simpler proposal density q(x) which we
can evaluate (within a multiplicative factor Zq, as before), and
from which we can generate samples, i.e. q̃(x) = Zq · q(x).
Further assume that we know the value of a constant c such that

cq̃(x) > p̃(x) ∀x
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Sampling tool: Rejection sampling

The procedure is as follows:

1. Generate two random numbers.

1.1 The first, x, is generated from the proposal density q(x).
1.2 The second, u is generated uniformly from the interval [0, cq̃(x)]

(see figure (b) above: book’s notation P ∗ = p̃, Q∗ = q̃).

2. Accept or reject the sample x by comparing the value of u with
the value of p̃(x)

2.1 If u > p̃(x), then x is rejected
2.2 Otherwise x is accepted; x is added to our set of samples {x(r)} and

the value of u discarded.
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Why does rejection sampling work?

1. x ∼ q(x)

2. u|x ∼ Unif[0, cq̃(x)]

3. x is accepted if u ≤ p̃(x).

For any set A

Px∼p(x ∈ A) =

∫
A
p(x)dx =

∫
1{x∈A}p(x)dx = Ex∼p[1{x∈A}].

Px∼q(x ∈ A|u ≤ p̃(x)) =Px∼q(x ∈ A, u ≤ p̃(x))
/
Ex∼q[P(u ≤ p̃(x)|x)]

=Ex∼q[1{x∈A}P(u ≤ p̃(x)|x)]
/
Ex∼q[

p̃(x)

cq̃(x)
]

=Ex∼q[1{x∈A}
p̃(x)

cq̃(x)
]
/ Zp

cZq

=Px∼p(x ∈ A)
Zp

cZq

/ Zp

cZq

=Px∼p(x ∈ A)

Prob Learning (UofT) CSC412-Week 4 37 / 43



Rejection sampling in many dimensions

In high-dimensional problems, the requirement that cq̃(x) ≥ p̃(x)
will force c to be huge, so acceptances will be very rare.

Finding such a value of c may be difficult too, since we don’t know
where the modes of p̃ are located nor how high they are.

In general c grows exponentially with the dimensionality, so the
acceptance rate is expected to be exponentially small in dimension

acceptance rate =
area under p̃

area under cq̃
=

Zp

cZq
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Latent variables

Latent variables are unobserved variables that govern certain
properties in our probabilistic models.

What to do when a variable z is unobserved but our model
depends on it?

If we never condition on z when in the inference problem, then we
can just integrate it out.

However, in certain cases, we are interested in the latent variables
themselves, e.g. the clustering problems.

More on latent variables when we cover Gaussian mixtures.
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The TrueSkill latent variable model

TrueSkill model is a player ranking system for competitive games.

The goal is to infer the skill of a set of players in a competitive
game, based on observing who beats who.

In the TrueSkill model, each player has a fixed level of skill,
denoted zi.

We initially don’t know anything about anyone’s skill, but we
assume everyone’s skill is independent (e.g. an independent
Gaussian prior).

We never get to observe the players’ skills directly, which makes
this a latent variable model.

Prob Learning (UofT) CSC412-Week 4 40 / 43



TrueSkill model

Instead, we observe the outcome of a series of matches between
different players.

For each game, the probability that player i beats player j is given
by

p(i beats j|zi, zj) = σ(zi − zj)

where sigma is the logistic function: σ(y) = 1
1+exp(−y) .

We can write the entire joint likelihood of a set of players and
games as:

p(z1, z2, . . . zN , game 1, game 2, .. game T)

=

[
N∏
i=1

p(zi)

][ ∏
games

p(i beats j|zi, zj)

]
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Posterior

Given the outcome of some matches, the players’ skills are no
longer independent, even if they’ve never played each other.

Computing the exact posterior over even two players’ skills
requires integrating over all the other players’ skills:

p(z1, z2|game 1, game 2, ... game T)

=

∫
· · ·

∫
p(z1, z2, z3 . . . zN |games)dz3 . . . dzN

Message passing can be used to compute approximate
posteriors!

More on this model in Assignment 2.
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Summary

Estimating expectations is an important problem, which is in
general hard. We learned 3 sampling-based tools for this task:

▶ Simple Monte Carlo
▶ Importance Sampling
▶ Rejection Sampling

Next lecture, we will learn to generate samples from a particular
distribution.
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