
Week 3: Tutorial
The intuition for how the Hammersley-Clifford theorem
works

Consider a simple chain . The corresponding graphical model is given by all

distributions that factorize

We want to show that this is equivalent to  as long as  and  for all 

.

We will use the characterization that  if and only if  does not depend

on .

For the left implication note that

So the statement works with  and .

For the right implication note that

and so

which does not depend on  proving the conditional independence.

Gaussian log-likelihood

Suppose we observe some data from the m-variate Gaussian distribution .

For this calculation we will assume that the underlying mean is 0. This is something that can

be assumed without loss of generality by centering the data. Denote . Recall that the

logarithm of the Gaussian density is

Up to the obvious constants that do not depend on , the log-likelihood is
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Note that

where

With this new notation

Some useful facts:

 is a strictly concave function of .

 is linear in .

The gradients are  and .

MRFs as exponential families

Consider a simple undirected graph  where each variable is binary. Consider the

following graphical model

or equivalently

The vector  takes four values . Take

and let  be the function that satisfies
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X1 − X2 − X3

p(x1, x2, x3|θ) =
1

Z(θ)
ψ1,2(x1, x2|θ1,2)ψ2,3(x2, x3|θ2,3)

p(x1, x2, x3|θ) = exp{ log ψ1,2(x1, x2|θ1,2) + log ψ2,3(x2, x3|θ2,3) − log Z(θ)}

(x1, x2) (0, 0), (0, 1), (1, 0), (1, 1)

θ1,2 := ∈ R
4.
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With these definitions . We define  and  in a

similar way obtaining that

which forms an exponential family with sufficient statistics

and with .

As a side comment we note that this exponential family is not minimal in the sense that the

values of  and  lie in a hyperplane in the sense that

Non-minimal exponential families do not satisfy the gradient equation  --

indeed, here . An easy solution is to get rid of the first coordinate in  and

replace it with the corresponding functions of the remaining entries of . This

defines new natural parameters

and new sufficient statistics

Moreover,

which should be now be explicitly expressed in terms of  and .
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Simple variable elimination example

Consider the following DAG

Suppose that we observe the variable . What is ?

The corresponding dAG model implies the factorization:

We have

To compute , we use variable elimination in the order 

Note that  does not need to participate in .

X6 = x̄6 p(X1|x̄6)
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Finally,

Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial neural

network model. In the language of todays lecture, it is obtained from a special form of the

Ising model with variables . The underlying graph is the

bipartite graph with all pairs  connected but with no other edges. The Ising model is

then given by all distributions

We can write it in terms of factors

so that

Note that computing  may be computationally expensive but we will see that many

quantities can be efficiently computed without knowing .

The corresponding RBM is given as the marginal distribution

Note that both
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can be computed very efficiently. This shows that both  and  are easy to obtain

and this computation does not even require any knowledge of the normalizing constant .

This computation confirms what we know from the Hammersley-Clifford theorem that all 's

are mutually independent given the vector . The individual activation functions are given by

with

called the sigmoid function.
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