Week 3: Tutorial

The intuition for how the Hammersley-Clifford theorem
works

Consider a simple chain X — Y — Z. The corresponding graphical model is given by all
distributions that factorize

f(z,y,2) = a(z,y)B(y, 2)-

We want to show that this is equivalent to X | Z|Y as long as a(z,y) > 0 and S(y, z) > 0 for all

Z,Y,z.

We will use the characterization that X 1L Z|Y if and only if f(z|y, z) = f(z|y) does not depend
on z.

For the left implication note that
f(z,y,2) = f(y,2) f(zly, 2) = f(z|y) f(y, 2).

So the statement works with a(z,y) = f(z|y) and B(y, z) = f(y, 2)-

For the right implication note that

f(y> z) = (Z CY(:L', y))ﬂ(ya z)

T

and so

a(z,y)By,2) _  a=z,y)
Xz alz,9)By,2) Do, az,y)

which does not depend on z proving the conditional independence.

f(zly, 2) =

Gaussian log-likelihood

Suppose we observe some data from the m-variate Gaussian distribution x1., = {x1,...,x,}.
For this calculation we will assume that the underlying mean is 0. This is something that can
be assumed without loss of generality by centering the data. Denote K = ¥~ !. Recall that the
logarithm of the Gaussian density is

1 1
logf(x; K) = —%log(%r) + ElogdetK — EXTKX.

Up to the obvious constants that do not depend on K, the log-likelihood is



1 n
(K X1) = %log det(K) — 5 > x{ Kxi.
=1

Note that

Z x; Kx; = Z tr(x;] Kx;) = Z tr(Kx;x; ) = ntr(KSy),
=1 =1

1=1

where

With this new notation

L (K;%x1.,) = — (logdet(K) — tr(KS,)).

| 3

Some useful facts:

* logdet(K) is a strictly concave function of K.
* tr(KS,)islinearin K.
 The gradients are Vlogdet(K) = K ! and Vtr(KS,) = Sh.

MRFs as exponential families

Consider a simple undirected graph X; — X3 — X3 where each variable is binary. Consider the
following graphical model

Y12(x1, 22]012)Y2,3(x2, 23]023)

p($1>$2a$3|9) = Z(G)

or equivalently

b(Z1,T2, T3 = €Xpq 10g Y1 2(T1,T2|V12 0g Yo 3(T2,T3|VU23) — 108
( 10) log 912 ( 1012) + log ¥ 3( |02,3) — log Z(0)

The vector (z1, z,) takes four values (0,0), (0,1), (1,0), (1,1). Take
log 7/)1,2(0, 0)
1 0,1
912 — Og"/)l,Q( ) € R4.
' log '(/)1,2(170)
10g¢1,2(17 1)

and let 1y o(z1, z5) be the function that satisfies



¢1,2(070) - ) <ﬁ1,2(07 1) - 3 ¢1,2(170) = ) ¢1,2(1a 1) -

oS O O =
o O = O
o = O O
- O. o O

With these definitions log ¥4 5(x1, 22|61 2) = 0;2¢1,2(x1, z,). We define 053 and ¢, 3(z5, z3) in a
similar way obtaining that

p(z1, T, x30) = exp {912@’2(3&'1, z9) + 0;3¢2,3(w2, z3) — log Z(Q)},

which forms an exponential family with sufficient statistics

(1—2)(1-2) (1= 22)(1 — o)
B 1 - z,)z B (1—=9)zs
b1o(x1,20) = 21(1 — 22) ) $23(x2,23) = zs(1 — z3)
T2y LaT3

and with Z(0) = 1.
As a side comment we note that this exponential family is not minimal in the sense that the
values of ¢12(x1,z2) and ¢23(z2, z3) lie in a hyperplane in the sense that
1
T 1 2
(,251,2(131, xz) 1 =1 for all (a:l, :132) € {0, 1} .

1

Non-minimal exponential families do not satisfy the gradient equation VA(0) = E,T(X) --
indeed, here A(f) = 0. An easy solution is to get rid of the first coordinate in ¢; »(z1, z5) and
replace it with the corresponding functions of the remaining entries of ¢, (1, 3). This
defines new natural parameters

. log 11 2(0,1) — log 4 5(0,0) i log 3,3(0,1) — log 5 3(0, 0)
612 = |logipy4(1,0) —logp2(0,0) 7, 025 = |logys(1,0) —logepy5(0,0)
llog Y1,2(1,1) — log v 5(0, O)J llog Po3(1,1) — log b, 5(0, O)J

and new sufficient statistics

~ (1 — 331)2122 ~ (1 — ac2):1:3
Pr2(z1,22) = [21(1 —z2) |,  P23(x2,23) = [z2(1 — x3)
T1T2 T2T3

Moreover,
A(g) = 10g ¢1,2(070)¢2,3(07 0)7

which should be now be explicitly expressed in terms of 8; > and 65 3.



Simple variable elimination example

Consider the following DAG

Suppose that we observe the variable X¢ = Z¢. What is p(X1|Z¢)?

The corresponding dAG model implies the factorization:
p(21,. ., 26) = p(z1)p(z2|z1)p(2s|1)p(za|x2)p(2s5|23)p(2s|22, 25)
We have
zr ={z1},2p = {z6}, zr = {2, 3,4, 25}

>0, P(TF, T8, TR)

p(zrlzE) =

( ) ZxF7xRp(xF’mE?wR)
T1,T 1,

= plarfas) = BELE) __ P@LT0)
p(mﬁ) Z.’L‘E(I}F,J?R p(m7 xﬁ)

To compute p(x1,Z6), We use variable elimination in the order 2,3,4,5
p(z1,26) = p(z1) Y Y > Y plaz|z)p(zs|z1)p(@e2)p(es|es)p(Zo|22, z5)
xr2 T3 xr4 5
=p(21) Y p(zale1) Y plaslar) Y pzales) ) | p(ws|es)p(e|z2, xs)
T2 T3 T4 5
=p(z1) Y p(@s|z1) Y plas|z1) D p(za|zs)p(Ze|zs, vs)
2 T3 T4

Note that p(Zs|z2, z3) does not need to participatein ), .



= p(21) Y p(zale1) D pl@slar)p(Ze|za, x3) Y | p(walzs)
= p(z1) i p(za|z1) i p(zs|z1)p(Zelas, z3) .

= p(z1) i p(x2‘$l)p9(6;6|x17 3)

~ p(e)p(Eolm)

Finally,

p(z1|Zg) = p(x1)p(Z6|z1)

>, p(@1)p(Zelwr)

Restricted Boltzmann machines

A restricted Boltzmann machine (RBM) is a simple generative stochastic artificial neural
network model. In the language of todays lecture, it is obtained from a special form of the
Ising model with variables (X1, ..., Xk, H1,..., H;) € {—1,1}*"1. The underlying graph is the
bipartite graph with all pairs H; — X; connected but with no other edges. The Ising model is
then given by all distributions

kol
p(.’IJl, vy Thy h1, e ,hl) X eXp{Z o;xr; + Z ﬁlhz —+ Z Z JZ].’Bth}
i i i=1 j=1
We can write it in terms of factors
1 1
b, (@i, hy) = exp{Taizi + Bk + Jijzih}

so that

l
1 ¥x.m, (2, ).

p(wl,...,xk,h17...,hl) = 7
. =1

2

1k
=1
Note that computing Z may be computationally expensive but we will see that many

quantities can be efficiently computed without knowing Z.

The corresponding RBM is given as the marginal distribution

plz)= > plz,h).

he{-1,1}

Note that both



can be computed very efficiently. This shows that both p(z|h) and p(h|z) are easy to obtain
and this computation does not even require any knowledge of the normalizing constant Z.

This computation confirms what we know from the Hammersley-Clifford theorem that all H;'s
are mutually independent given the vector X. The individual activation functions are given by

Hf 1 ¢ij($i)hj)

p(hjlz) =
’ le,l/}ij(wi’ )+H 1¢zg(mw )

=o(B; + Z Jijz;)

with

called the sigmoid function.



