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Today’s lecture

Summary of the content:

Markov Random Fields (MRFs).

Exact inference on graphical models

Variable elimination

Some announcements:

Assignment 1 is released this week.

TA office hours Tues 5-6pm

My office hours Thurs 5-6pm
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Recap of DAG Models

A directed acyclic graphical model
(DAG) implies a factorization of the
joint distribution.

Variables are represented by nodes,
and edges represent dependence.

DAG induces the following factorization of the joint distribution of
random variables x1, x2, . . . , xN , we can write:

p(x1, . . . , xN ) =

N∏
i=1

p(xi|x1, . . . , xi−1) =

N∏
i=1

p(xi|parents(xi))

where parents(xi) is the set of nodes with edges pointing to xi.
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Are DAGMs always useful?

How do we model symmetric parameterization?

Friends - different food preferences, how do we model what food
we’ll get?

Image - how do we encode relationships between pixels?
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Are DAGMs always useful?

Each node is conditionally independent of
its non-descendants given its parents

{Xi ⊥ non-desc(Xi) | parents(Xi)} ∀i.

For some problems, it is not clear how to
choose the edge directions in DAGMs.

Markov blanket (mb): the set of nodes that makes Xi conditionally
independent of all the other nodes.

In our example: mb(X8) = {X3, X4, X7, X9, X12, X13}.

One would expect X4 and X12 not to be in the Markov blanket
mb(X8), especially given X2 and X14 are not.
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Markov Random Fields

Undirected graphical models (aka Markov random fields
(MRFs)) are models with dependencies described by an
undirected graph.

The nodes in the graph represent random variables. However, in
contrast to DAGMs, edges represent probabilistic interactions
between neighbors (as opposed to conditional dependence).
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Some Markov Properties

Global Markov Property (G):

XA ⊥ XB|XC iff XC separates XA from XB.

i.e There is no path in the graph between A and B that doesn’t go
through XC .

Local Markov Property (Markov Blanket) (L):

Xt ⊥ (XV \cl(t))|Xmb(t)

The set of nodes that renders a node t conditionally independent
of all the other nodes in the graph.

where cl(t) = mb(t) ∪ {t} is the closure of node t, and V is the set
of all nodes in the graph.

Pairwise Markov Property (P):

Xs ⊥ Xt|XV \{s,t} ⇔ No edge between s and t

Two nodes s and t are conditionally independent given all other
nodes if and only if there is no edge between s and t.
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Example of Markov Properties

Global:{X1, X2} ⊥ {X6, X7}|{X3, X4, X5}
Local: X1 ⊥ rest|{X2, X3} so mb(X1) = {X2, X3}.
Pairwise: X1 ⊥ X7|rest
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Cliques

A clique is a subset of nodes such that every two vertices in the subset
are connected by an edge.

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex.
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Distributions Induced by MRFs

Let x = (x1, ..., xm) be the set of all random variables in our graph G.

Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

p(x) ∝
∏
C∈C

ψC(xC)

for some nonnegative potential functions ψC , where xC = (xi)i∈C .

The MRF on G represents the distributions that factorize wrt G.

The factored structure of the distribution makes it possible to more
efficiently do the sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(x) > 0 for all x, the following statements are equivalent:

p factorizes according to G, that is,

p(x) ∝
∏
C∈C

ψC(xC)

for some nonnegative potential functions ψC .

Global Markov Properties: XA⊥XB|XS if the sets A and B
are separated by S in G (every path from A to B crosses S).

In particular,

If i, j are not connected by an edge then Xi⊥Xj |Xrest.

The Markov blanket of Xi is given by its neighbors in G.
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

p(x1, x2, x3, x4) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ1,4(x1, x4)

4 3

21 ψ1,2(x1, x2) ψ2,3(x2, x3) ψ3,4(x3, x4) ψ1,4(x1, x4)

x1 x2 x2 x3 x3 x4 x1 x4
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
1 1 10 1 1 100 1 1 1 1 1 100

These potentials are not probabilities since we ignored the
normalization constant!
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Example:

How many maximal cliques are there?

What is the underlying factorization?

What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) ∝ ψ1,2,3(x1, x2, x3)ψ2,3,5(x2, x3, x5)ψ2,4,5(x2, x4, x5)

× ψ3,5,6(x3, x5, x6)ψ4,5,6,7(x4, x5, x6, x7)

Prob Learning (UofT) CSC412-Week 3 14 / 44



Example:

e.g. (X1, X2) ⊥ (X6, X7)
∣∣ (X3, X4, X5)

X1 ⊥ X5 | (X2, X3)
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Image MRF
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Not all MRFs can be represented as DAGMs

Take the following MRF for example (a) and our attempts at encoding
this as a DAGM (b, c).

Two conditional independencies in (a):
▶ 1. A⊥C|D,B 2. B⊥D|A,C

In (b), we have the first independence, but not the second.

In (c), we have the first independency, but not the second. Also, B
and D are marginally independent.
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Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.
E.g. explaining away:

An undirected model is unable to capture the marginal independence,
X⊥Y that holds at the same time as X ⊥̸Y |Z.
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MRFs as Exponential Families

Consider a parametric family of factorized distributions

p(x|θ) =
1

Z(θ)

∏
C∈C

ψC(xC |θC), θ = (θC)C∈C .

We can write this in an exponential form:

p(x|θ) = exp
{∑

C∈C
logψC(xC |θC)− logZ(θ)︸ ︷︷ ︸

=A(θ)

}
Suppose the potentials have a log-linear form

logψC(xC |θC) = θ⊤C ϕC(xC)

we get the exponential family

p(x|θ) = exp
{∑

C∈C
θ⊤CϕC(xC)− logZ(θ)︸ ︷︷ ︸

=A(θ)

}
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MRFs as Exponential Families

Question: When logψC(xC |θC) = θ⊤C ϕC(xC)?

Finite discrete case:

If X is finite discrete then xC takes a finite number of values and
so logψC takes a finite number of values.

Take θC as all these possible values, and let ϕC(xC) is a vector 1
on the entry correspond to xC and zeros otherwise.

Then logψC(xC |θC) = θ⊤CϕC(xC) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

∂ logZ(θ)

∂θC
= E[ϕC(XC)].
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

p(x1, x2, x3, x4) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3)ψ3,4(x3, x4)ψ1,4(x1, x4)

4 3

21 ψ1,2(x1, x2) ψ2,3(x2, x3) ψ3,4(x3, x4) ψ1,4(x1, x4)

x1 x2 x2 x3 x3 x4 x1 x4
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
1 1 10 1 1 100 1 1 1 1 1 100

These potentials are not probabilities since we ignored the
normalization constant!
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Example: Ising model

The Ising model is an MRF that is
used to model magnets.

The nodes variables are spins, i.e., we
use xs ∈ {−1,+1}.

Define the pairwise clique potentials as

ψst(xs, xt) = eJstxsxt .

where Jst is the coupling strength between nodes s and t.

ψst(−1,−1) = ψst(1, 1) = eJst ; ψst(−1, 1) = ψst(1,−1) = e−Jst

If two nodes are not connected set Jst = 0.
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Ising model

We might want to add node potentials as well

ψs(xs) = ebsxs

The overall distribution becomes

p(x) ∝
∏
s∼t

ψst(xs, xt)
∏
s

ψs(xs) = exp
{∑

s∼t

Jstxsxt +
∑
s

bsxs

}
.

If Jst > 0 the model promotes same spins on neighboring spins.

Hammersley-Clifford theorem: Jij = 0 then Xi⊥Xj |Xrest.

Prob Learning (UofT) CSC412-Week 3 23 / 44



Prob Learning (UofT) CSC412-Week 3 24 / 44



Multivariate Gaussian distribution

Univariate Gaussian: f(x;µ, σ2) = 1√
2πσ

exp(− 1
2σ2 (x− µ)2).

Recall: Multivariate normal distribution, X = (X1, . . . , Xm):

Let µ ∈ Rm and Σ symmetric positive definite m×m matrix. We write
X ∼ Nm(µ,Σ) if the density of the vector X is

f(x;µ,Σ) = 1
(2π)m/2

(detΣ)−1/2 exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
.

Positive definite: ∀u ̸= 0 u⊤Σu > 0.

Moments:

mean vector: EX = µ,

covariance: var(X) = Σ.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (XA, XB). Denote

µ = (µA, µB) and Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
.

Marginal distribution

XA ∼ N(µA,ΣAA)

Conditional distribution

XA|XB = xB ∼ N
(
µA +ΣABΣ

−1
BB(xB − µB),ΣAA − ΣABΣ

−1
BBΣBA

)
Note that the conditional covariance is constant.
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Some other properties

Linear transformations:

A ∈ Rm×p for m ≤ p and X ∼ Np(µ,Σ) then AX ∼ Nm(Aµ,AΣAT ).

Conditional independence:

Xi⊥Xj if and only if Σij = 0.

Xi⊥Xj |XC if and only if Σij − Σi,CΣ
−1
C,CΣC,j = 0

Let R = V \ {i, j}. The following are equivalent:
▶ Xi⊥Xj |XR

▶ Σij − Σi,RΣ
−1
R,RΣR,j = 0

▶ (Σ−1)ij = 0
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Gaussian Graphical models

Denote K = Σ−1 then

p(x|µ,Σ) ∝
∏
s

e−
1
2Kss(xs−µs)2

∏
s<t

e−Kst(xs−µs)(xt−µt).

Important interpretation: Kij = 0 if and only if Xi⊥Xj |Xrest.

Show that this is an exponential family.

Prob Learning (UofT) CSC412-Week 3 28 / 44



Summary

Undirected graphical models:

MRFs are useful if there is no topological ordering in the graph.

Cliques are key to parametrizing distributions induced by MRFs.

Ising model and Gaussian graphical models are important
example.
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Inference as Conditional Distribution

We explore inference in probabilistic graphical models (PGMs).

− xE = The observed evidence

− xF = The unobserved variable we want to infer

− xR = x− {xF , xE} = Remaining variables, extraneous to query.

Focus on computing the conditional probability distribution

p(xF |xE) =
p(xF , xE)

p(xE)
=

p(xF , xE)∑
xF
p(xF , xE)

for which, we marginalize out these extraneous variables, focussing
on the joint distribution over evidence and subject of inference:

p(xF , xE) =
∑
xR

p(xF , xE , xR)
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Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

Computational complexity depends on the graph structure.

Dynamic programming avoids enumerating all variable
assignments.
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Example: Simple chain

Lets start with the example of a simple chain

A→ B → C → D

where we want to compute p(D), with no evidence variables.

We have
xF = {D}, xE = {}, xR = {A,B,C}

We saw last lecture that this graphical model describes the
factorization of the joint distribution as:

p(A,B,C,D) = p(A)p(B|A)p(C|B)p(D|C)

Assume each variable can take on k different values.
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Example: Simple chain

The goal is to compute the marginal p(D):

p(D) =
∑

A,B,C

p(A,B,C,D)

However, if we do this sum naively, cost is exponential O(kn=4) :

p(D) =
∑

A,B,C

p(A,B,C,D)

=
∑
C

∑
B

∑
A

p(A)p(B|A)p(C|B)p(D|C)

Instead, choose an elimination ordering:

p(D) =
∑

C,B,A

p(A,B,C,D)

=
∑
C

p(D|C)

(∑
B

p(C|B)
(∑

A

p(A)p(B|A)
))

.
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Example: Simple chain (Part 1)

P (D) = P (a1)P (b1|a1)P (c1|b1)P (d1|c1)+
+ P (a2)P (b1|a2)P (c1|b1)P (d1|c1)+
+ P (a1)P (b2|a1)P (c1|b2)P (d1|c1)+
+ P (a2)P (b2|a2)P (c1|b2)P (d1|c1)+
+ P (a1)P (b1|a1)P (c2|b1)P (d1|c2)+
+ P (a2)P (b1|a2)P (c2|b1)P (d1|c2)+
+ P (a1)P (b2|a1)P (c2|b2)P (d1|c2)+
+ P (a2)P (b2|a2)P (c2|b2)P (d1|c2)
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Example: Simple chain (Part 2)

Continued

+ P (a1)P (b1|a1)P (c1|b1)P (d2|c1)+
+ P (a2)P (b1|a2)P (c1|b1)P (d2|c1)+
+ P (a1)P (b2|a1)P (c1|b2)P (d2|c1)+
+ P (a2)P (b2|a2)P (c1|b2)P (d2|c1)+
+ P (a1)P (b1|a1)P (c2|b1)P (d2|c2)+
+ P (a2)P (b1|a2)P (c2|b1)P (d2|c2)+
+ P (a1)P (b2|a1)P (c2|b2)P (d2|c2)+
+ P (a2)P (b2|a2)P (c2|b2)P (d2|c2)

The “height”number of terms is exponential in n, and “width”is linear
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Example: Simple chain

This reduces the complexity by first computing terms that appear
across the other sums.

p(D) =
∑
C

p(D|C)
∑
B

p(C|B)
∑
A

p(A)p(B|A)

=
∑
C

p(D|C)
∑
B

p(C|B)p(B)

=
∑
C

p(D|C)p(C)

The cost of performing inference on the chain in this manner is
O(nk2). In comparison, generating the full joint distribution and
marginalizing over it has complexity O(kn)!
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Best Elimination Ordering

The complexity of variable elimination depends on the elimination
ordering!

Unfortunately, finding the best elimination ordering is NP-hard.
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Intermediate Factors

The same algorithm both for DAGMs and MRFs:

Introduce nonnegative factors ϕ (like for MRFs).

e.g. in a simple DAG model:

p(A,B,C) =
∑
X

p(X)p(A|X)p(B|A)p(C|B,X)

=
∑
X

ϕ1(X)ϕ2(A,X)ϕ3(A,B)ϕ4(X,B,C)

= ϕ3(A,B)
∑
X

ϕ1(X)ϕ2(A,X)ϕ4(X,B,C)

= ϕ3(A,B)τ(A,B,C)

Marginalizing over X we introduce a new factor, denoted by τ .
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Sum-Product Inference

Abstractly, computing p(xF |xE) is given by the sum-product
algorithm:

p(xF |xE) ∝ τ(xF , xE) =
∑
xR

∏
C∈F

ψC(xC)

where F is a set of potentials or factors.

For DAGMs, F is given by the the sets of the form

{i} ∪ parents(i) for all nodes i.

For MRFs, F is given by the set of maximal cliques.
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Example

This describes a factorization:

p(C,D, I,G, S, L,H, J) = p(C)p(D|C)p(I)
× p(G|D, I)p(L|G)p(S|I)p(J |S,L)p(H|J,G)

We have

F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H,J,G)}

}
We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.
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Example (F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H, J,G)}

})
Elimination Ordering ≺ {C,D, I,H,G, S, L}

p(J) =
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)
∑
D

ψ(G,D, I)
∑
C

ψ(C)ψ(C,D)

︸ ︷︷ ︸
τ(D)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)
∑
D

ψ(G,D, I)τ(D)

︸ ︷︷ ︸
τ(G,I)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)
∑
H

ψ(H,G, J)
∑
I

ψ(S, I)ψ(I)τ(G, I)

︸ ︷︷ ︸
τ(S,G)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)τ(S,G)
∑
H

ψ(H,G, J)

︸ ︷︷ ︸
τ(G,J)

=
∑
L

∑
S

ψ(J, L, S)
∑
G

ψ(L,G)τ(S,G)τ(G, J)

︸ ︷︷ ︸
τ(J,L,S)

=
∑
L

∑
S

ψ(J, L, S)τ(J, L, S)

︸ ︷︷ ︸
τ(J,L)

=
∑
L

τ(J, L)

︸ ︷︷ ︸
τ(J)

= τ(J) Do we need to normalize the final τ?
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Complexity of Variable Elimination Ordering

We discussed previously that variable elimination ordering
determines the computational complexity. This is due to how
many variables appear inside each sum.

Different elimination orderings will involve different number of
variables appearing inside each sum.

The complexity of the VE algorithm is

O(mkNmax)

where
▶ m is the number of initial factors.
▶ k is the number of states each random variable takes (assumed to

be equal here).
▶ Ni is the number of random variables inside each sum

∑
i.

▶ Nmax = maxiNi is the number of variables inside the largest sum.
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Example

Elimination Ordering ≺ {C,D, I,H,G, S, L}
Here are all the initial factors:

F =
{
{C}, {C,D}, {I}, {G,D, I}, {L,G}, {S, I}, {J, S, L}, {H,J,G)}

}
=⇒ m = |Φ| = 8

Here are the sums, and the number of variables that appear in
them ∑

C

ψ(C)ψ(C,D)

︸ ︷︷ ︸
NC=2

∑
D

ψ(G,D, I)τ(D)

︸ ︷︷ ︸
ND=3

∑
I

ψ(S, I)ψ(I)τ(G, I)

︸ ︷︷ ︸
NI=3∑

H

ψ(H,G, J)

︸ ︷︷ ︸
NH=3

∑
G

ψ(L,G)τ(S,G)τ(G, J)

︸ ︷︷ ︸
NG=4

∑
S

ψ(J, L, S)τ(J, L, S)

︸ ︷︷ ︸
NS=3∑

L

τ(J, L)

︸ ︷︷ ︸
NL=2

=⇒ the largest sum is NG = 4.

For simplicity, assume all variables take on k states. So the complexity of the
variable elimination under this ordering is O(8 · k4).
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Summary

Undirected graphical models:

MRFs are useful if there is no topological ordering in the graph.

Cliques are key to parametrizing distributions induced by MRFs.

Ising model and Gaussian graphical models are important
example.

Variable elimination:

Variable elimination can be used for exact inference in PGMs.

The ordering in variable elimination can significantly reduce the
computational complexity.

The overall complexity of the variable elimination algorithm can
be computed.
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