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Today’s lecture

Summary of the content:
e Markov Random Fields (MRFSs).

e Exact inference on graphical models

@ Variable elimination

Some announcements:

o Assignment 1 is released this week.

o TA office hours Tues 5-6pm
e My office hours Thurs 5-6pm
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Recap of DAG Models

o A directed acyclic graphical model
(DAG) implies a factorization of the
joint distribution.

o Variables are represented by nodes,
and edges represent dependence.

DAG induces the following factorization of the joint distribution of
random variables x1, o, ..., TN, We can write:

N

N
p(x1,...,xN) = Hp(a:i|x1, cey L) = Hp(xi|parents(xi))
i=1 i=1
where parents(z;) is the set of nodes with edges pointing to ;.
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Are DAGMs always useful?

e How do we model symmetric parameterization?
o Friends - different food preferences, how do we model what food
we’ll get?

e Image - how do we encode relationships between pixels?
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Are DAGMs always useful?

4\71 - 4\72 @ 4\74 —> 4\},
| ' T ) | @ Each node is conditionally independent of

X X »@ X, its non-descendants given its parents

| R

Xy = X1 > \D—» Xu— X5 {X; L non-desc(X;) | parents(X;)} Vi.
V V V V

o For some problems, it is not clear how to
choose the edge directions in DAGMs.
Figure : Causal MRF or a Markov mesh

X1 = Xir = Xig = Xjg = Xy

Markov blanket (mb): the set of nodes that makes X; conditionally
independent of all the other nodes.

In our example: mb(Xg) = {Xg,X4,X7,X9,X12,X13}.

One would expect X4 and Xi2 not to be in the Markov blanket
mb(Xg), especially given X5 and X14 are not.
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Markov Random Fields

e Undirected graphical models (aka Markov random fields
(MRFs)) are models with dependencies described by an
undirected graph.

@ The nodes in the graph represent random variables. However, in
contrast to DAGMs, edges represent probabilistic interactions
between neighbors (as opposed to conditional dependence).

X, — X, X, — X
| |
&~ (O x.
| |
Xu — Xpo @ Xy — X

A\yl(i - A\VIT - ‘\'lb‘ - AYIQ - 4\720
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Some Markov Properties

Global Markov Property (G):
o X4 1 Xp|X¢ iff X¢ separates X4 from Xp.

@ i.e There is no path in the graph between A and B that doesn’t go
through Xc.

Local Markov Property (Markov Blanket) (L):
o Xy L (XV\cl(t))|me(t)

o The set of nodes that renders a node ¢ conditionally independent
of all the other nodes in the graph.

e where cl(t) = mb(t) U {t} is the closure of node ¢, and V is the set
of all nodes in the graph.

Pairwise Markov Property (P):
o X5 L Xi| Xy (s < No edge between s and ¢

@ Two nodes s and ¢ are conditionally independent given all other
nodes if and only if there is no edge between s and ¢.
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Example of Markov Properties

o Global:{Xl,XQ} 1 {XG,X7}‘{X3,X4,X5}
e Local: X; L rest|{Xs, X3} so mb(X;) = {X2, X3}.

o Pairwise: X; 1 Xy|rest
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Cliques

A clique is a subset of nodes such that every two vertices in the subset
are connected by an edge.

A maximal clique is a clique that cannot be extended by including
one more adjacent vertex.
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Distributions Induced by MRF's

Let x = (x1, ..., Tm) be the set of all random variables in our graph G.
Let C be the set of all maximal cliques of G.

The distribution p of X factorizes with respect to G if

p(x) o ] velwe)

ceC

for some nonnegative potential functions ¥ ¢, where zo = (z;)iec-

The MRF on G represents the distributions that factorize wrt G. )

The factored structure of the distribution makes it possible to more
efficiently do the sums/integrals and is a form of dimension reduction.
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Hammersley-Clifford Theorem

If p(x) > 0 for all «, the following statements are equivalent:

e p factorizes according to G, that is,

px) o ][] velze)
ceC
for some nonnegative potential functions ¥¢.
e Global Markov Properties: X4 Xp|Xg if the sets A and B
are separated by S in G (every path from A to B crosses S).
In particular,
e If i, j are not connected by an edge then X; L X;| X es.
e The Markov blanket of X; is given by its neighbors in G.
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

1
p(x1, T2, 23, T4) = 21111,2(:81,$2)¢2,3(SE2,$3)¢3,4(l‘379C4W1,4(901,$4)

1 2 P1,2(x1, 2) P2,3(x2,23) P3,4(x3,24) P1,4(z1,24)
T To To T3 x3 T4 T Tq
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
4 3 1 1 10 1 1 100 1 1 1 1 1 100
These potentials are not probabilities since we ignored the
normalization constant!
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Example:

e How many maximal cliques are there?
e What is the underlying factorization?

e What are the induced conditional independence statements?
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Example:

Lets see how to factorize the undirected graph of our running example:

p(x) o< P123(z1, 22, 23)0235(x2, 23, 25) V2.4 5(x2, T4, T5)

X 356(23, T5, T6)Va567(T4, T5, L6, T7)
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Example:

e.g. (X1,X2) L (X6, X7) | (X3, X4, X5)
X1 1L X5 (X2, X3)
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Image MRF

X, — X, @ Xy — X5

| T

O -
|

X1 — Xpp @ Xy — X5

Xig — X7 — Xig — X9 — Xy
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Not all MRF's can be represented as DAGMSs

Take the following MRF for example (a) and our attempts at encoding
this as a DAGM (b, c).

O

(a) (b) (c)

e Two conditional independencies in (a):
» 1. ALC|D,B 2. BLD|A,C

e In (b), we have the first independence, but not the second.

e In (c), we have the first independency, but not the second. Also, B
and D are marginally independent.
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Not all DAGMs can be represented as MRFs

Not all DAGMs can be represented as MRFs.
E.g. explaining away:

An undirected model is unable to capture the marginal independence,
X LY that holds at the same time as X YY|Z.
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MRF's as Exponential Families

o Consider a parametric family of factorized distributions

p(z|6) = de)cﬂecwcucwc), 0= (0c)cec.

@ We can write this in an exponential form:
p(xl6) = exp { S logvo(aclfc) - log 7(6) }
ceC
=A(0)
@ Suppose the potentials have a log-linear form
log Yo (zclfo) = 00 e (zc)
we get the exponential family

p(@l0) = exp { 3 0t bc(we) — log 2(9) }
cec oy
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MRF's as Exponential Families

Question: When log Yo (xc|0c) = Hg do(ze)?

Finite discrete case:

o If X is finite discrete then x¢ takes a finite number of values and
so log ¥ takes a finite number of values.

e Take O as all these possible values, and let ¢ (z¢) is a vector 1
on the entry correspond to x¢ and zeros otherwise.

o Then log Yo (zc|0c) = 0L ¢c(zc) as required.

Multivariate Gaussian case will be covered later in the lecture.

We can find the expectation of the C-th feature

0log Z(0)

P00 El¢c(Xc)]-
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Representing potentials

If the variables are finite discrete, we can represent the potential
functions as tables of (non-negative) numbers.

e.f. consider a 4-cycle and binary random variables

1
p(x1, T2, 23, T4) = 21111,2(:81,$2)¢2,3(SE2,$3)¢3,4(l‘379C4W1,4(901,$4)

1 2 P1,2(x1, 2) P2,3(x2,23) P3,4(x3,24) P1,4(z1,24)
T To To T3 x3 T4 T Tq
0 0 30 0 0 100 0 0 1 0 0 100
0 1 5 0 1 1 0 1 100 0 1 1
1 0 1 1 0 1 1 0 100 1 0 1
4 3 1 1 10 1 1 100 1 1 1 1 1 100
These potentials are not probabilities since we ignored the
normalization constant!
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Example: Ising model

o The Ising model is an MRF that is
used to model magnets.

@ The nodes variables are spins, i.e., we
use s € {—1,+1}.

@ Define the pairwise clique potentials as

Yst(ws, 1) = elHTo"t,

where Jg; is the coupling strength between nodes s and t.

o Y1, —1) = da(L,1) = €’ a(=1,1) = vhur(1, ~1) = e
e If two nodes are not connected set Jy = 0.
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I[sing model

We might want to add node potentials as well

Ps(xg) = ePeTs

The overall distribution becomes

OCstt Tsy Tt st -Ts —exp{zjt-%'s-rt‘FZb -Ts}'

s~t s~t

If Js; > 0 the model promotes same spins on neighboring spins.

o Hammersley-Clifford theorem: J;; = 0 then X; 1 X ;| Xyegt.
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protein network social network

" Applications

functional
connectome of Undirected finance
— ) -
P Graphical
y Models
natural
gene microarray language
processing
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Multivariate Gaussian distribution

Univariate Gaussian: f(z;u,o0?) = 217.'0' ("Xp(—#(.l‘ —1)?).

Recall: Multivariate normal distribution, X = (Xi,...,X,,):

Let 4 € R™ and ¥ symmetric positive definite m x m matrix. We write
X ~ Np(p, X) if the density of the vector X IS wevc .,

Flas 1, 2) = (o (det £) 712 exp (—5(a

Positive definite: Yu # 0 u'Xu > 0.

Moments:
e mean vector: EX = p,
e covariance: var(X) = X.
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Recall: Marginal and conditional distributions

Split X into two blocks X = (X 4, Xp). Denote

2AA EAB]
YBa XBB|’

p=(pa,pp)  and EZ[

Marginal distribution
X4~ N(pa,Xaa)

Conditional distribution

XualXp =2~ N (pa+2aS5p(@s — 18), a4 — SaBE5pEB4)
@ Note that the conditional covariance is constant.
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Some other properties

Linear transformations:
A e R™P for m <pand X ~ Ny(u,%) then AX ~ Ny, (Ap, ASAT).

Conditional independence:
o X;1Xj; if and only if 3;; = 0.

o X;1X;|Xc ifand onlyif X;; — Ez’,CEE'lc'EC,J' =0

o Let R=V\{i,j}. The following are equivalent:
> leXJ‘XR
> Lij — SirER RER; =0
> (Z71)i; =0
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Gaussian Graphical models

Denote K = Y71 then

p(x|p, X) o« He 2KSS Ts—fs) He Kst(ws—ps)(@e—pt)
s<t

Important interpretation: K;; = 0 if and only if X; 1 X ;| Xrest.

—

S v € ¢

12 3 45

Show that this is an exponential family.
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Summary

Undirected graphical models:
o MRFs are useful if there is no topological ordering in the graph.

e Cliques are key to parametrizing distributions induced by MRFs.

o Ising model and Gaussian graphical models are important
example.
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Inference as Conditional Distribution

e We explore inference in probabilistic graphical models (PGMs).

— xg = The observed evidence
— 2 = The unobserved variable we want to infer

— xr =« — {zp,rp} = Remaining variables, extraneous to query.

e Focus on computing the conditional probability distribution

per,ap) _ plar,vp)
p(zg) > up PP, TE)

p(rrlzp) =

o for which, we marginalize out these extraneous variables, focussing
on the joint distribution over evidence and subject of inference:

plep,vp) = Y pler, 75 TR)

TR

Prob Learning (UofT) CSC412-Week 3 30 /44




Variable elimination

Order in which we marginalize affects the computational cost!

Our main tool is variable elimination:

e A simple and general exact inference algorithm in any
probabilistic graphical model (DAGMs or MRFs).

e Computational complexity depends on the graph structure.

@ Dynamic programming avoids enumerating all variable
assignments.
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Example: Simple chain

o Lets start with the example of a simple chain

A—-B—-C—D

where we want to compute p(D), with no evidence variables.

e We have
xp =1{D}, zg ={}, zr = {A,B,C}

o We saw last lecture that this graphical model describes the
factorization of the joint distribution as:

p(A, B,C, D) = p(A)p(B|A)p(C|B)p(D|C)

o Assume each variable can take on k different values.
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Example: Simple chain

e The goal is to compute the marginal p(D):

p(D)= > p(4,B,C,D)
AB,C

o However, if we do this sum naively, cost is exponential O(k"=*) :

p(D) = Z p(A,B,C,D)
A,B,C

= "3 p(A)p(BlA)p(C|B)p(D|C)

C B A
o Instead, choose an elimination ordering;:

p(D)= > p(A B,C,D)
C.B.A

=Y p(DlC) <2p<C\B>(Zp<A>p<B|A>)) .
C B A
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Example: Simple chain (Part 1)

N~ o~ o~ o~ o~ o~~~

N T — — — — —

e N P G
D N N
N o o~ o~ o~ o~ o~ —
S — — — — — —
AN~ o~ o~ o~ o~ o~ o~

S — — Y — ~— ~— ~—

P
+P
+P
+P
+P
+P
+ P
+P
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Example: Simple chain (Part 2)

Continued

+ + 4+ + + + +

R A N
(o) I I e A R o A I o [ |
CRECECECECECEGES
~— N N '
AR A A A AR R
e N e N N N N N

— — . — [aN] [a\] N [a\]
Q Q QO Q Q O QO Q
N N N N N N N
AR R R R R AR
A~ I~ A/~ I/~
i [a\] i [N} i [a\] i [a\]
8 8 8 8 8 8 8 3
— — (2] N — — N (o))
S o0 0 o0 0 o0 O O
N N e e N N N N
A A AR A AR A
e Y e N e Y e N
— [a\] — [a\| — (2] — (o]
(SIS SN~ S e = R T =
N N N N N N N

The “height”number of terms is exponential in n, and “width”is linear
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Example: Simple chain

o This reduces the complexity by first computing terms that appear
across the other sums.

Zp D|C) Zp C|B) Zp p(B|A)
= Zp D|C) Zp C|B)p(B

C B
= p(D|C)p(C

C

@ The cost of performing inference on the chain in this manner is
O(nk?). In comparison, generating the full joint distribution and
marginalizing over it has complexity O(k™)!
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Best Elimination Ordering

@ The complexity of variable elimination depends on the elimination
ordering!

o Unfortunately, finding the best elimination ordering is NP-hard.
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Intermediate Factors

The same algorithm both for DAGMs and MRFs:
e Introduce nonnegative factors ¢ (like for MRFs).

@ e.g. in a simple DAG model:

p(A,B,C) Zp p(A|X)p(B|A)p(C|B, X)
—Z@ )62(A, X)¢3(A, B)oa(X, B, C)

—@ABZ@ )$2(4, X)da(X, B, C)
= ¢3(A, B)T(A, B,(C)

e Marginalizing over X we introduce a new factor, denoted by 7.
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Sum-Product Inference

e Abstractly, computing p(zp|xg) is given by the sum-product
algorithm:

pleplre) < 7(zr,zp) = > [] velze)

rr CEF

where F is a set of potentials or factors.
o For DAGMSs, F is given by the the sets of the form

{i} U parents(7) for all nodes 1.

e For MRFs, F is given by the set of maximal cliques.

Prob Learning (UofT) CSC412-Week 3 39 /44



Example

C Co herence )
l

% _——_ @ This describes a factorization:
C Difficulty > (Intelligence)

_Grade D) C 5AT)
1 p(C, D, 1,G, S, L, H,J) = p(C)p(D|C)p(I)
= x p(G|D, I)p(L|G)p(S|I)p(J|S, L)p(H|J,G)
(_ Job __)'
(_qu_nv_)'/ o

We have
F = {{C}{C, D} {1}.{G, D, I}, {L,G}.{S,1},{J, S, L}, {H, J.G)}}

We are interested in the probability of getting a job, p(J).

We perform exact inference as follows.
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Example (7= {{c},{C, D}, {1},{G, D, T}, {L, G}, {5, T}, {], 5, L}, {H, ], G)} } )
Elimination Ordering < {C,D,I,H,G, S, L}
p(J) =D D (L, L, S) D (L, G) Y (H, G, J) > (S, Dy(I) Y (G, D, 1) Y $(C)$(C, D)
L S G H I D C
T(D)
=33 WL L S) D P(L, G) Y W(H, G, ) > w(S, Dy(I) > (G, D, 1)7(D)
L S G H I D
T(G,I)
=D 3w L, 8) Y (L, G) D> Ww(H, G, J) > w(S, DY(I)T(G, I)
L S G H I
7(S,G)

ST, L, 8) > (L, G)T(S, G) D w(H, G, J)
S G H

I
2\

(G, J)

STD (I L, 8) > WL, G)r(S, G)T(G, J)
L S G

7(J,L,S)

I
=1
7]

Y(J, L, S)7(J, L, S)

T(J,L)

=7(J) Do we need to normalize the final 77
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Complexity of Variable Elimination Ordering

o We discussed previously that variable elimination ordering
determines the computational complexity. This is due to how
many variables appear inside each sum.

@ Different elimination orderings will involve different number of
variables appearing inside each sum.

e The complexity of the VE algorithm is
O (mkNmax)

where

» m is the number of initial factors.

» k is the number of states each random variable takes (assumed to
be equal here).

» N; is the number of random variables inside each sum ).

» Npax = max;N; is the number of variables inside the largest sum.
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Example

Elimination Ordering < {C,D, I, H,G,S, L}

o Here are all the initial factors:
F=1{{C},{C, D} {I},{G, D, I},{L,G},{S,1},{J,S,L},{H, J,G)}}

= m=|P| =38

@ Here are the sums, and the number of variables that appear in

them
S w(C)w(C, D) S w(G, D, DT(D) > W(S, DY(I)T(G, )
C D I

Ng=2 Np=3 Nr=3

STW(H, G, ) D (L, G)T(S, G)r(G,T) > ¢(J, L, S)T(J, L, S)
H G S

Npg=3 Ng=4 Ng=3

Z 7(J, L) = the largest sum is Ng = 4.
L

Np=2

@ For simplicity, assume all variables take on k states. So the complexity of the
variable elimination under this ordering is O(8 - k*).
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Summary

Undirected graphical models:
e MRFs are useful if there is no topological ordering in the graph.
o Cliques are key to parametrizing distributions induced by MRFs.

o Ising model and Gaussian graphical models are important
example.

Variable elimination:
@ Variable elimination can be used for exact inference in PGMs.

@ The ordering in variable elimination can significantly reduce the
computational complexity.

@ The overall complexity of the variable elimination algorithm can
be computed.

Prob Learning (UofT) CSC412-Week 3 44 / 44



